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TD Chimie n°10 : Transformations modélisées par des réactions de précipitation-solubilisation 

 

Exercice 1 : Formation d’un précipité 

 

1.                            𝐶𝑎𝐹2(𝑠)      =             𝐶𝑎2+(𝑎𝑞)            + 2𝐹−(𝑎𝑞)  𝐾0 = 𝐾𝑠(𝐶𝑎𝐹2(𝑠)) 

(mol)    EI  𝑛0(excès)      0                              0 

    EF 𝑛0 − 𝜉𝑒𝑞                    𝜉𝑒𝑞 = 𝑠𝑉                2𝜉𝑒𝑞 = 2𝑠𝑉 

 

A l’équilibre : 𝑸𝒓,𝒆𝒒 = 𝑲𝟎 = 𝐾𝑠(𝐶𝑎𝐹2(𝑠)) ⟹
[𝐶𝑎2+]

𝑒𝑞
([𝐹−]𝑒𝑞)

2

(𝐶0)3 =
𝑠×(2𝑠)2

(𝐶0)3 = 𝐾𝑠(𝐶𝑎𝐹2(𝑠)) ⟹ 𝟒𝒔𝟑 = (𝑪𝟎)𝟑 × 𝑲𝒔(𝑪𝒂𝑭𝟐(𝒔)) 

⟹ 𝒔 = 𝑪𝟎 × (𝑲𝒔(𝑪𝒂𝑭𝟐(𝒔)))𝟏/𝟑 AN : 𝒔 = 𝟓, 𝟔 × 𝟏𝟎−𝟔 𝒎𝒐𝒍 ∙ 𝑳−𝟏 

 

2.  𝐶𝑎2+(𝑎𝑞) + 2𝐹−(𝑎𝑞) = 𝐶𝑎𝐹2(𝑠) 

 

A la limite d’apparition du précipité, 𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
(𝐶0)

3

[𝐶𝑎2+]𝑒𝑞([𝐹−]𝑒𝑞)
2 =

1

𝐾𝑠(𝐶𝑎𝐹2(𝑠))
 avec [𝐶𝑎2+]𝑒𝑞 = [𝐶𝑎2+]0 = 1,0 ×

10−2 𝑚𝑜𝑙 ∙ 𝐿−1 et [𝐹−]𝑒𝑞 =
𝐶𝐹−×𝑉𝑣𝑒𝑟𝑠é

𝑉
 (avec 𝐶𝐹− = 1,0 × 10−1 𝑚𝑜𝑙 ∙ 𝐿−1 et 𝑉 = 100 𝑚𝐿 = 0,1 𝐿) 

 

⟹
(𝐶0)3

[𝐶𝑎2+]0 (
𝐶𝐹− × 𝑉𝑣𝑒𝑟𝑠é

𝑉
)

2 =
1

𝐾𝑠(𝐶𝑎𝐹2(𝑠))
⟹

(𝐶0)3 × 𝑉2

[𝐶𝑎2+]0(𝐶𝐹− × 𝑉𝑣𝑒𝑟𝑠é)2
=

1

𝐾𝑠(𝐶𝑎𝐹2(𝑠))
 

⟹ 𝑉𝑣𝑒𝑟𝑠é
2 =

(𝐶0)3 × 𝑉2 × 𝐾𝑠(𝐶𝑎𝐹2(𝑠))

[𝐶𝑎2+]0 × (𝐶𝐹−)2
⟹ 𝑉𝑣𝑒𝑟𝑠é = √

(𝐶0)3 × 𝑉2 × 𝐾𝑠(𝐶𝑎𝐹2(𝑠))

[𝐶𝑎2+]0 × (𝐶𝐹−)2
 

 

AN : 𝑽𝒗𝒆𝒓𝒔é = √
𝟏×𝟎,𝟏𝟐×𝟏𝟎−𝟏𝟎,𝟓

𝟏,𝟎×𝟏𝟎−𝟐 ×(𝟏,𝟎×𝟏𝟎−𝟏)
𝟐 = 𝟏, 𝟎 × 𝟏𝟎−𝟒,𝟐𝟓 = 𝟓, 𝟔 × 𝟏𝟎−𝟓𝑳 = 𝟓𝟔 𝝁𝑳 : il faut donc ajouter deux gouttes pour 

faire apparaître le précipité 

 

3. (1) (mol/L) 𝐶𝑎2+(𝑎𝑞) + 2𝐹−(𝑎𝑞) = 𝐶𝑎𝐹2(𝑠)  𝐾1
0 =

1

𝐾𝑠(𝐶𝑎𝐹2(𝑠))
= 1010,5 ≫ 1 

EI            0,05              0,05                0 

EF                       0,025            𝜀 ≈ 0              0,025  Hypothèse (à vérifier..) : transformation quantitative  

 

A l’équilibre : 𝐾1
0 = 𝑄𝑟𝑒𝑞 =

(𝐶0)
3

[𝐶𝑎2+]𝑒𝑞([𝐹−]𝑒𝑞)
2 =

(𝐶0)
3

[𝐶𝑎2+]𝑒𝑞𝜀2 ⟹ 𝜀2 =
(𝐶0)

3

[𝐶𝑎2+]𝑒𝑞𝐾1
0 ⟹ 𝜀 = √

(𝐶0)3

[𝐶𝑎2+]𝑒𝑞𝐾1
0 

AN : [𝑭−]𝒆𝒒 = 𝜺 = √
𝟏

𝟎,𝟎𝟐𝟓×𝟏𝟎𝟏𝟎,𝟓 = 𝟑, 𝟔 × 𝟏𝟎−𝟓 𝒎𝒐𝒍/𝑳 

 

(2) (mol/L) 𝐵𝑎2+(𝑎𝑞) + 2𝐹−(𝑎𝑞) = 𝐵𝑎𝐹2(𝑠)  𝐾2
0 =

1

𝐾𝑠(𝐵𝑎𝐹2(𝑠))
= 106,0 

EI            0,01               𝜀                0 

Il y a précipitation si le système chimique évolue dans le sens direct donc si 𝑄𝑟2 < 𝐾2
0   

𝑄𝑟2 =
(𝐶0)

3

[𝐵𝑎2+]𝑖([𝐹−]𝑖)2 =
(𝐶0)

3

[𝐵𝑎2+]𝑖(𝜀)2 AN : 𝑸𝒓𝟐 =
𝟏

𝟎,𝟎𝟏×(𝟑,𝟔×𝟏𝟎−𝟓)
𝟐 = 𝟕, 𝟕 × 𝟏𝟎𝟏𝟎 > 𝑲𝟐

𝟎 : le précipité 𝑩𝒂𝑭𝟐(𝒔) n’apparaît pas 

 

Exercice 2 : Solubilité d’un précipité et redissolution par échange d’anion 

 

1. Solubilité du bromure d’argent dans l’eau pure :  

 

𝐴𝑔𝐵𝑟(𝑠)      =             𝐴𝑔+            + 𝐵𝑟−  𝐾0 = 𝐾𝑠(𝐴𝑔𝐵𝑟(𝑠)) 

(mol)    EI  𝑛0(excès)      0          0 

    EF 𝑛0 − 𝜉𝑒𝑞                    𝜉𝑒𝑞 = 𝑠𝑉       𝜉𝑒𝑞 = 𝑠𝑉 
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A l’équilibre : 𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
[𝐴𝑔+]

𝑒𝑞
[𝐵𝑟−]𝑒𝑞

(𝐶0)2 = 𝐾𝑠(𝐴𝑔𝐵𝑟(𝑠)) ⟹ 𝑠2 = 𝐾𝑠(𝐴𝑔𝐵𝑟(𝑠)) 

⟹ 𝑠 = √𝐾𝑠(𝐴𝑔𝐵𝑟(𝑠)) AN : 𝒔 = 𝟏, 𝟎 × 𝟏𝟎−𝟔 𝒎𝒐𝒍 ∙ 𝑳−𝟏 

 

2. Réaction modélisant la transformation de précipitation : 𝐴𝑔𝐵𝑟(𝑠) + 𝐼− =  𝐴𝑔𝐼(𝑠) + 𝐵𝑟−  𝐾0 =
𝐾𝑠(𝐴𝑔𝐵𝑟(𝑠))

𝐾𝑠(𝐴𝑔𝐼(𝑠))
= 104 ≫ 1 

𝐴𝑔𝐵𝑟(𝑠) + 𝐼− =  𝐴𝑔𝐼(𝑠) + 𝐵𝑟− 

(mol) EI     𝑛0            𝑛         0           0 (en négligeant la quantité initialement présente d’ions Br- égale à 1,0 × 10−6 𝑚𝑜𝑙) 
 EF     𝜀        𝑛 − 𝑛0     𝑛0          𝑛0 

 

EF = état d’équilibre en se plaçant à la limite de disparition d’𝐴𝑔𝐵𝑟(𝑠) 

 

A l’équilibre : 𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
[𝐵𝑟−]𝑒𝑞

[𝐼−]𝑒𝑞
=

𝑛0

𝑛−𝑛0
= 𝐾0 ⟹ 𝑛 = 𝑛0 ×

1+𝐾0

𝐾0   AN : 𝒏 = 𝟏, 𝟎 × 𝟏𝟎−𝟑 𝒎𝒐𝒍 ≈ 𝒏𝟎 

Ce que l’on aurait pu écrire plus directement la transformation pouvant être supposée comme quasi-quantitative 

 

 

 

Exercice 3 : Précipitation sélective 

 

1. Les précipités apparaissent lorsque le % des ions diminuent par précipitation. Par lecture graphique :  

 

pH d’apparition de 𝑪𝒂(𝑶𝑯)𝟐(𝒔) : 𝒑𝑯𝟏 = 𝟏𝟐, 𝟖  pH d’apparition de 𝑴𝒈(𝑶𝑯)𝟐(𝒔) : 𝒑𝑯𝟐 = 𝟗, 𝟐 

 

𝐶𝑎2+ + 2𝐻𝑂− = 𝐶𝑎(𝑂𝐻)2(𝑠) 𝐾0 =
1

𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))
=

1

𝐾𝑆1
 

A l’apparition du précipité, le système est à l’équilibre et [𝐶𝑎2+]𝑒𝑞 = [𝐶𝑎2+]0: 𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
(𝐶0)

3

[𝐶𝑎2+]0([𝐻𝑂−]𝑒𝑞)
2 =

1

𝐾𝑆1
 

⟹ 𝐾𝑆1 =
[𝐶𝑎2+]

0
([𝐻𝑂−]𝑒𝑞)

2

(𝐶0)3 =
[𝐶𝑎2+]

0
(

𝐾𝑒

10−𝑝𝐻1
)

2

1
 AN : 𝑲𝑺(𝑪𝒂(𝑶𝑯)𝟐(𝒔)) = 𝟒, 𝟎 × 𝟏𝟎−𝟔 

 

De la même manière on trouve : 𝑲𝑺(𝑴𝒈(𝑶𝑯)𝟐(𝒔)) = 𝟏, 𝟑 × 𝟏𝟎−𝟏𝟏 

 

2. Condition de précipitation : 

 𝑄𝑟 =
1

[𝐶𝑎2+]0 (
𝐾𝑒

10−𝑝𝐻)
2 =

1

[𝐶𝑎2+]0(10−(𝑝𝐻−14))2
< 𝐾0 =

1

𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))
⟹ [𝐶𝑎2+]0(10−(𝑝𝐻−14))

2
> 𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠)) 

 

Donc la ligne 17 s’écrit : CCa*(10**(i-14))**2 > 10**(-pKsCa)    

 

Dans ces conditions, le système est à l’équilibre, ce qui nous permet de calculer la concentration résiduelle en ions calcium :  

 

𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
1

[𝐶𝑎2+]𝑒𝑞 (
𝐾𝑒

10−𝑝𝐻𝑒𝑞
)

2 =
1

𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))
⟹ [𝐶𝑎2+]𝑒𝑞 =

𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))

(
𝐾𝑒

10−𝑝𝐻𝑒𝑞
)

2  

⟹ [𝐶𝑎2+]𝑒𝑞 = 10−𝑝𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))−2𝑝𝐻𝑒𝑞+28 ⟹ %𝐶𝑎 = 100 ×
[𝐶𝑎2+]𝑒𝑞

[𝐶𝑎2+]0

= 100 ×
10−𝑝𝐾𝑆(𝐶𝑎(𝑂𝐻)2(𝑠))−2𝑝𝐻𝑒𝑞+28

[𝐶𝑎2+]0

 

 

Donc la ligne 18 s’écrit : 100*10**(-pKsCa-2*i+28)/CCa 

 

Idem pour la ligne 23 : CMg*(10**(i-14))**2 > 10**(-pKsMg) 

 

Et la ligne 24 : 100*10**(-pKsMg-2*i+28)/CMg 

 

 

Exercice 4 : Condition d’existence d’un précipité et redissolution par complexation 

 

1. 𝐶𝑢2+ + 2𝐻𝑂− = 𝐶𝑢(𝑂𝐻)2(𝑠) 𝐾0 =
1

𝐾𝑆(𝐶𝑢(𝑂𝐻)2(𝑠))
= 1020 

𝑄𝑟,0 =
(𝐶0)

3

[𝐶𝑢2+]0[𝐻𝑂−]2 =
1

[𝐶𝑢2+]0(
𝐾𝑒

10−𝑝𝐻)
2  AN : 𝑄𝑟,0 = 1022 > 𝐾0   
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Le système évolue dans le sens indirect mais le précipité étant initialement absent, il ne se passe rien, le système n’évolue pas 

et aucun précipité n’apparaît. 

 

2. (1)   𝐶𝑢(𝑂𝐻)2(𝑠) = 𝐶𝑢2+ + 2𝐻𝑂−   𝐾1
0 = 𝐾𝑆 = 𝐾𝑆(𝐶𝑢(𝑂𝐻)2(𝑠)) 

(2)   𝐶𝑢2+ + 4𝑁𝐻3  = [𝐶𝑢(𝑁𝐻3)4]2+   𝐾2
0 = 𝛽4 

 

(1) + (2)  𝑪𝒖(𝑶𝑯)𝟐(𝒔) + 𝟒𝑵𝑯𝟑  = [𝑪𝒖(𝑵𝑯𝟑)𝟒]𝟐+ + 𝟐𝑯𝑶− 𝑲𝟎 = 𝑲𝑺𝜷𝟒 = 𝟏𝟎−𝟕 

(mol) EI 𝑛0 = 10−3           𝑛  0  10𝑝𝐻−14 

 EF 𝜀           𝑛 − 4𝑛0 𝑛0  10𝑝𝐻−14   

 

(le milieu est tamponné : le pH est donc la concentration en ions hydroxyde ne bouge pas) 

  

 𝐾0 ≪ 1 : on peut faire l’hypothèse que 4𝑛0 ≪ 𝑛 ⟹ 𝑛𝑁𝐻3,𝑒𝑞 ≈ 𝑛 

 A la limite de disparition du précipité, le système est à l’équilibre : 𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
[[𝐶𝑢(𝑁𝐻3)4]2+]

𝑒𝑞
([𝐻𝑂−]𝑒𝑞)

2
𝐶0

([𝑁𝐻3]𝑒𝑞)
4 = 𝐾0 

 ⟹
𝑛0
𝑉

(10𝑝𝐻−14)
2

(
𝑛

𝑉
)

4 = 𝐾0 ⟹ 𝑛 = 𝑉 × (
𝑛0
𝑉

(10𝑝𝐻−14)
2

𝐾0 )

1

4

  AN : 𝒏 = 𝟎, 𝟏𝟎 𝒎𝒐𝒍 (≫ 4𝑛0 : hypothèse validée) 

 

Exercice 5 : Précipitation et pH : cas d’un anion basique 

 

1.                            CaCO3(s) =   Ca2+  +  CO3
2- 

(mol)    EI  𝑛0(excès)                 0                          0 

    EF 𝑛0 − 𝜉𝑒𝑞                         𝜉𝑒𝑞 = 𝑠𝑉              𝜉𝑒𝑞 = 𝑠𝑉 

 

A l’équilibre : 𝑄𝑟,𝑒𝑞 = 𝐾0 = 𝐾𝑠(𝐶𝑎𝐶𝑂3(𝑠)) ⟹
[𝐶𝑎2+]

𝑒𝑞
[𝐶𝑂3

2−]
𝑒𝑞

(𝐶0)2 = 𝑠2 = 𝐾𝑠(𝐶𝑎𝐶𝑂3(𝑠)) ⟹ 𝑠 = √𝐾𝑠(𝐶𝑎𝐶𝑂3(𝑠)) 

 

AN : 𝒔 = 𝟏𝟎−𝟒,𝟐 𝒎𝒐𝒍 ∙ 𝑳−𝟏 = 𝟔, 𝟑 × 𝟏𝟎−𝟓 𝒎𝒐𝒍 ∙ 𝑳−𝟏 à 25°C 

 

2. Diagramme de prédominance :  

 

 

𝑝𝐻 ↘⟹ [𝐶𝑂3
2−] ↘⟹ 𝑸𝒓 =

[𝐶𝑎2+]
𝑒𝑞

[𝐶𝑂3
2−]

(𝐶0)2 < 𝑲𝟎 = 𝐾𝑠(𝐶𝑎𝐶𝑂3(𝑠)) : le système évolue dans le sens direct celui de la 

solubilisation du carbonate de calcium, la solubilité augmente. 

 

3. Le carbonate de calcium une fois solubilisé se retrouve sous la forme des trois espèces CO2(aq), HCO3
- et CO3

2-. Elle est par 

ailleurs toujours égale à la concentration en ions calcium. 

 

𝑠 = [𝐶𝑂3
2−]

𝑒𝑞
+ [𝐻𝐶𝑂3

−]𝑒𝑞 + [𝐶𝑂2]𝑒𝑞 = [𝐶𝑎2+]𝑒𝑞  

 

4. 𝑠 = [𝐶𝑂3
2−]

𝑒𝑞
+ [𝐻𝐶𝑂3

−]𝑒𝑞 + [𝐶𝑂2]𝑒𝑞 = [𝐶𝑂3
2−]

𝑒𝑞
+

[𝐶𝑂3
2−]

𝑒𝑞
[𝐻3𝑂+]

𝑒𝑞

𝐾𝐴2
+

[𝐻𝐶𝑂3
−]𝑒𝑞[𝐻3𝑂+]

𝑒𝑞

𝐾𝐴1
 

⟹ 𝑠 = [𝐶𝑂3
2−]

𝑒𝑞
+

[𝐶𝑂3
2−]

𝑒𝑞
[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐶𝑂3

2−]
𝑒𝑞

[𝐻3𝑂+]𝑒𝑞

𝐾𝐴1𝐾𝐴2

= [𝐶𝑂3
2−]

𝑒𝑞
× (1 +

[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2

)

=
𝐾𝑠(𝐶0)2

[𝐶𝑎2+]𝑒𝑞

× (1 +
[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2

) 

⟹ 𝑠 =
𝐾𝑠(𝐶0)2

𝑠
× (1 +

[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2

) ⟹ 𝑠2 = 𝐾𝑠(𝐶0)2 × (1 +
[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2

) 

⟹ 𝑠 = √𝐾𝑠 × (1 +
[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2

+
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2

) 

 

5. 𝒑𝑯 ≤ 𝟓, 𝟒 : 𝐶𝑂2 majoritaire   𝑠 = [𝐶𝑂2]𝑒𝑞 = √𝐾𝑠 × (
[𝐻3𝑂+]𝑒𝑞

2

𝐾𝐴1𝐾𝐴2
) = √

𝐾𝑠

𝐾𝐴1𝐾𝐴2
[𝐻3𝑂+]𝑒𝑞  

⟹ 𝑝𝑠 = −𝑙𝑜𝑔(𝑠) = −𝑙𝑜𝑔 (√
𝐾𝑠

𝐾𝐴1𝐾𝐴2
) − 𝑙𝑜𝑔([𝐻3𝑂+]𝑒𝑞) ⟹ 𝒑𝒔 = 𝒑𝑯 − 𝒍𝒐𝒈 (√

𝑲𝒔

𝑲𝑨𝟏𝑲𝑨𝟐
)  pente = +1 
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𝟕, 𝟒 ≤ 𝒑𝑯 ≤ 𝟗, 𝟑 : 𝐻𝐶𝑂3
− majoritaire 𝑠 = [𝐻𝐶𝑂3

−]𝑒𝑞 = √𝐾𝑠 ×
[𝐻3𝑂+]𝑒𝑞

𝐾𝐴2
= √

𝐾𝑠

𝐾𝐴2
× √[𝐻3𝑂+]𝑒𝑞 

⟹ 𝑝𝑠 = −𝑙𝑜𝑔(𝑠) = −𝑙𝑜𝑔 (√
𝐾𝑠

𝐾𝐴2
) −

1

2
𝑙𝑜𝑔([𝐻3𝑂+]𝑒𝑞) ⟹ 𝒑𝒔 =

𝟏

𝟐
𝒑𝑯 − 𝒍𝒐𝒈 (√

𝑲𝒔

𝑲𝑨𝟐
)   pente = +1/2 

𝟏𝟏, 𝟑 ≤ 𝒑𝑯  : 𝐶𝑂3
2− majoritaire  𝑠 = [𝐶𝑂3

2−]
𝑒𝑞

= √𝐾𝑠 ⟹ 𝒑𝒔 − 𝒍𝒐𝒈(√𝑲𝒔) = 𝒄𝒔𝒕𝒆 pente = 0 

 

Pour un pH compris entre 8,0 et 8,3, on se trouve dans le domaine de majorité de 𝐻𝐶𝑂3
− 

𝑠(𝑝𝐻 = 8,3) = 𝟔, 𝟑 × 𝟏𝟎−𝟒 𝒎𝒐𝒍 ∙ 𝑳−𝟏   𝑠(𝑝𝐻 = 8,0) = 𝟖, 𝟗 × 𝟏𝟎−𝟒 𝒎𝒐𝒍 ∙ 𝑳−𝟏 

 

6. On retrouve bien les résultats obtenus en question 5 :  

allure générale : 𝑠 ↗⟹ 𝑝𝑠 ↘ lorsque 𝑝𝐻 ↘   pente 0, 1/2 et 1 dans les différents domaines de pH 

 

7. (1)  CaCO3(s) = Ca2+  + CO3
2- 

(2) CO3
2- + CO2 + H2O = 2 HCO3

- 

(1) + (2) : CaCO3(s) + CO2 + H2O = Ca2+ +2 HCO3
- 

[𝐶𝑂2] ↗⟹ 𝑸𝒓 ↘< 𝑲𝒔 : le système évolue dans le sens direct celui de la solubilisation du carbonate de calcium, la solubilité 

augmente. 

 

Graphiquement, on observe que, pour un pH donné, 𝑝𝑠 ↘⟹ 𝑠 ↗, si la température ↗ : le réchauffement climatique va aussi 

dans le sens d’une solubilisation accrue du carbonate de calcium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercice 6 : Précipitation et pH : cas d’un précipité amphotère 

1. Le précipité Cr(OH)3(s) est qualifié d’hydroxyde « amphotère » car il peut se dissocier en milieu acide ou basique : 

 

- en milieu acide : (1) Cr(OH)3(s) + 3 H+ = Cr3+ + 3 H2O → 𝑲𝟏
𝟎 =

𝑲𝑺

𝑲𝒆
𝟑  

- en milieu basique : (2) Cr(OH)3(s) + OH- = Cr(OH)4
- → 𝑲𝟐

𝟎 = 𝜷𝟒𝑲𝑺 

 

2. Pour pH ≤ 4,3 : la solubilité est maximale, le précipité s’est entièrement dissous sous forme d’ions Cr3+ selon le bilan (1). Ce 

domaine correspond au domaine de prédominance de Cr3+. 

 

Pour pH ≥ 13 : la solubilité est maximale, le précipité s’est entièrement dissous sous forme d’ions Cr(OH)4
- selon le bilan (2). 

Ce domaine correspond au domaine de prédominance de Cr(OH)4
-. 

 

Pour 4,3 ≤ pH ≤ 13 : la solubilité diminue jusqu’à atteindre une valeur minimale. Le précipité Cr(OH)3(s) est présent dans ce 

domaine, qui correspond donc au domaine d’existence de Cr(OH)3(s). 

 

On obtient donc le diagramme :  

 

 

 

3. A la limite de disparition du précipité Cr(OH)3(s) en milieu acide selon la réaction Cr(OH)3(s) + 3 H+ = Cr3+ + 3 H2O : 

Le système est à l’équilibre et [𝐶𝑟3+]𝑒𝑞 = 𝐶0 = 1,0 × 10−2 𝑚𝑜𝑙 ∙ 𝐿−1 

⟹ 𝐾0 = 𝐾1
0 =

𝐾𝑆

𝐾𝑒
3 =

[𝐶𝑟3+]
𝑒𝑞

(𝐶0)
2

([𝐻+]𝑒𝑞)
3 ⟹ 𝐾𝑆 = 𝐾𝑒

3 𝐶0

([𝐻+]𝑒𝑞)
3 = 𝐾𝑒

3 𝐶0

(10−𝑝𝐻1)
3  avec 𝑝𝐻1 = 4,3   

AN : 𝑲𝑺 = 𝟏𝟎−𝟑𝟏,𝟏 ⟹ 𝒑𝑲𝑺 = 𝟑𝟏, 𝟏 

 

4.  A la limite de disparition du précipité Cr(OH)3(s) en milieu basique selon la réaction Cr(OH)3(s) + OH- = Cr(OH)4
-: 

Le système est à l’équilibre et [[𝐶𝑟(𝑂𝐻)4]−]𝑒𝑞 = 𝐶0 = 1,0 × 10−2 𝑚𝑜𝑙 ∙ 𝐿−1 

Cr3+ Cr(OH)3(s) Cr(OH)4
- 

4,3 13 pH 
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⟹ 𝐾0 = 𝐾2
0 = 𝛽4𝐾𝑆 =

[[𝐶𝑟(𝑂𝐻)4]−]𝑒𝑞

[𝐻𝑂−]𝑒𝑞
⟹ 𝛽4 =

𝐶0

𝐾𝑆(
𝐾𝑒

10−𝑝𝐻2
)
  avec 𝑝𝐻2 = 13   

AN : 𝜷𝟒 = 𝟑𝟎, 𝟏 

 

 

Exercice 7 : Titrage d’une solution acidifiée d’ion nickel II 

 

1. Soit pH0, le pH de début de précipitation de Ni(OH)2. 

 

𝑁𝑖2+ + 2𝐻𝑂− = 𝑁𝑖(𝑂𝐻)2(𝑠) 𝐾0 =
1

𝐾𝑆(𝑁𝑖(𝑂𝐻)2(𝑠))
 

A l’apparition du précipité, le système est à l’équilibre et [𝑁𝑖2+]𝑒𝑞 = [𝑁𝑖2+]0 = 𝐶 : 

𝑄𝑟,𝑒𝑞 = 𝐾0 ⟹
(𝐶0)

3

[𝑁𝑖2+]0([𝐻𝑂−]0)2 =
1

𝐾𝑆(𝑁𝑖(𝑂𝐻)2(𝑠))
⟹ [𝐻𝑂−]0 = √

𝐾𝑆(𝑁𝑖(𝑂𝐻)2(𝑠))

𝐶
  

AN : [𝐻𝑂−]0 = 7,0 ⟹ 𝑝𝐻0 = −𝑙𝑜𝑔([𝐻3𝑂+]0) = −𝑙𝑜𝑔 (
𝐾𝑒

[𝐻𝑂−]0
) ⟹ 𝒑𝑯𝟎 = 𝟕, 𝟎  

(Remarque : l’autoprotolyse n’est en fait pas négligeable ici) 

 

2. a.  0 < VB (mL) < 5,0 :   H3O+ + HO- = 2 H2O  K’1 =1/Ke = 1014 

5,0 < VB (mL) < 15,0 mL :  Ni2+ + 2 HO- = Ni(OH)2 (s)  K’2 = 1 / Ks = 1016 

 

b. Le titrage des ions H3O+
(aq) par les ions HO-

(aq) est terminé à Ve1 = 5,0 mL (point équivalent pour ce titrage). En effet, le saut de pH 

commence à se dessiner. Par conséquent, on peut écrire à cette équivalence : 𝐶𝐵𝑉𝑒1 = 𝐶1𝑉0 ⟹ 𝐶1 =
𝐶𝐵𝑉𝑒1

𝑉0
; 𝐴𝑁: 𝐶1 = 0,018 𝑚𝑜𝑙/𝐿 

 

Les ions Ni2+ sont titrés entre les volumes Ve1 = 5,0 mL et Ve2 = 15,0 mL, on peut donc écrire : 

 
𝐶𝐵(𝑉𝑒2 − 𝑉𝑒1)

2
= 𝐶2𝑉0 ⟹ 𝐶2 =

𝐶𝐵(𝑉𝑒2 − 𝑉𝑒1)

2𝑉0

; 𝐴𝑁: 𝐶2 = 0,018 𝑚𝑜𝑙/𝐿 
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Exercice 9 : Titrage des ions chlorure par la méthode de Charpentier-Volhard 

 

1. Bilan des réactions intervenant dans cette méthode : 

(1) Ag+ + Cl– = AgCl(s)    K1= 109,8 → quasi-totale 

(2) Ag+ + SCN– = AgSCN(s)   K2 = 1012 → quasi-totale 

(3) Fe3+ + SCN– = FeSCN2+  K3 = 102,9  sera considérée comme quasi-totale 

 

2. Si le milieu est trop basique, on risque la précipitation de l’hydroxyde de fer (III) : Fe(OH)3(s), dont le pKs est 38, donc ce 

précipité est très peu soluble. 

 

3. A l’apparition de la couleur « rose saumon » : 

 

Calcul de la concentration en ion thiocyanate : 

𝐾1 =
[𝐹𝑒𝑆𝐶𝑁2+]

𝑒𝑞
(𝐶0)

[𝐹𝑒3+]𝑒𝑞[𝑆𝐶𝑁−]𝑒𝑞
⇒ [𝑆𝐶𝑁−]𝑒𝑞 =

[𝐹𝑒𝑆𝐶𝑁2+]
𝑒𝑞

[𝐹𝑒3+]𝑒𝑞𝐾1
=

5,0×10−6

5,0×10−6×102,9 = 1,26 × 10−3 𝑚𝑜𝑙. 𝐿−1  

car [𝐹𝑒3+]0 = 1,0 × 10−5𝑚𝑜𝑙/𝐿 ⇒ [𝑭𝒆𝟑+]𝒆𝒒 = [𝐹𝑒3+]0 − [𝐹𝑒𝑆𝐶𝑁2+]𝑒𝑞 = 𝟓, 𝟎 × 𝟏𝟎−𝟔 𝒎𝒐𝒍. 𝑳−𝟏 

 

Calcul de la concentration en ion argent : 

𝐾2 =
(𝐶0)2

[𝐴𝑔+]𝑒𝑞[𝑆𝐶𝑁−]𝑒𝑞

⇒ [𝐴𝑔+]𝑒𝑞 =
1

𝐾2[𝑆𝐶𝑁−]𝑒𝑞

⇒ [𝑨𝒈+]𝒆𝒒 =
1

10−2,9 × 1012
= 1,0 × 10−9,1 = 𝟕, 𝟗 × 𝟏𝟎−𝟏𝟎𝒎𝒐𝒍. 𝑳−𝟏 

Il reste alors : 𝑛𝐴𝑔+ = [𝐴𝑔+]𝑒𝑞 × (𝑉0 + 𝑉𝑒𝑞) ⟹ 𝒏𝑨𝒈+ = 𝟕, 𝟎 × 𝟏𝟎−𝟏𝟏 𝒎𝒐𝒍, une quantité très faible devant la quantité initiale 

en ions argent. Cette méthode est donc précise : l’excès d’argent a bien été entièrement titré lors de la deuxième étape. 

 

4. Détermination de l’excès d’ions argent dans le prélèvement de V0 = 50mL : 

A l’équivalence du titrage associé à l’étape (3), on a : 𝑛𝐴𝑔+ = 𝑛𝑆𝐶𝑁− = 𝐶𝑆𝐶𝑁−𝑉𝑒𝑞  dans V0 = 50 mL.  

 

Détermination de l’excès d’ions argent dans la solution initiale S’ de volume V = V1 + V2 + VS: 

𝑛′𝐴𝑔+ = 𝐶𝑆𝐶𝑁−𝑉𝑒𝑞 ×
𝑉1 + 𝑉2 + 𝑉𝑆

𝑉0

 

 

Détermination de la quantité d’ions chlorure consommés (et donc présents initialement) dans S’ :  

La réaction (1) étant totale, on a :  

𝑛′𝐴𝑔+ = 𝑛′𝐴𝑔+,0 − 𝑛′𝐶𝑙− ⇒ 𝑛′𝐶𝑙− = 𝑛′𝐴𝑔+,0 − 𝑛′𝐴𝑔+ = 𝐶𝐴𝑔+𝑉1 − 𝐶𝑆𝐶𝑁−𝑉𝑒𝑞 ×
𝑉1 + 𝑉2 + 𝑉𝑆

𝑉0

 

 

Détermination de la masse de chlorure contenu dans 6,33 g de poudre de lait:  

𝑚𝐶𝑙− = 𝑛𝐶𝑙−,𝑆′ × 𝑀(𝐶𝑙) ⟹ 𝑚𝐶𝑙− = 0,032𝑔 

 

Détermination de la masse de chlorure contenu dans 100 g de poudre de lait:  

Dans 100g de poudre : 𝒎 =
𝟏𝟎𝟎

𝟔,𝟑𝟑
= 𝟎, 𝟓𝟎𝟒 𝒈, ce qui est conforme à l’étiquette, validant ainsi la méthode utilisée pour titrer les 

ions chlorure dans le lait. 

 

 


