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TD Physique n°8 : Dynamique des fluides

Exercice 1 : Vidange d’un récipient a 1’aide d’un siphon

Pour vider l'eau d'une citerne, on utilise un siphon formé d'un tube coudé de section intérieure
S= 7 cm? terminé par un embout de section s= 5 cm’ (cf figure). On indique que la section de
la surface libre (en A) est trés grande devant S et s.

On supposera le régime permanent et on prendra Po = 1 bar pour la pression atmosphérique,
p =10 kg.m™ pour la masse volumique de l’eau et g = 9,81 m.s. On considérera I’eau comme
un fluide parfait et incompressible.

(*) Exprimer puis calculer la vitesse d'écoulement en F.
(*) Calculer en m® par heure le débit du siphon.
(*) Calculer la pression en C. A quelle condition, sur P. un siphon tel que celui-ci peut-il fonctionner ?

Exercice 2 : Vidange d’un réservoir en régime lentement variable

DN

Un récipient cylindrique de hauteur H est rempli d’eau, liquide parfait et incompressible, jusqu’a A
une hauteur h. Le sommet du récipient de section S est ouvert a lair libre. La pression
atmosphérique régnant pendant [’expérience est Py.

A linstant initial, on ouvre [’orifice circulaire (B), de section s, au fond du réservoir ; cette section

est considérée comme petite devant S, la section du sommet de la clepsydre.

On note v4 la vitesse de descente de la surface libre et vp la vitesse de sortie de [’eau. B 0
Données : H=50cm, h =40 cm, S =2830cm? s =1 cm? et g = 10 m/s>.

(*) Exprimer la vitesse vg(t) en fonction de g et z(t), cote de la surface libre.
(**) Exprimer I’équation différentielle a laquelle obéit z(t). En déduire I’expression traduisant les variations de z(t).
(*) Déterminer la durée T de vidange du réservoir.

Exercice 3 : Cheminée

On s’intéresse a I’évacuation des effluents gazeux par une cheminée d’usine. Tous les gaz considérés obéissent a [’équation d’état des
gaz parfaits ; on notera respectivement T, P et u, la température, la pression et la masse volumique. A la base de la cheminée considérée,
la vitesse initiale des effluents gazeux est nulle.

1.

(*) En admettant que I’écoulement de ces gaz est incompressible et stationnaire, exprimer la vitesse d’éjection vg des gaz en
haut de la cheminée en fonction de la hauteur h de la cheminée, de la différence de pression AP = P;,; — P(h) entre le bas et
le haut de cette cheminée, de la masse volumique u des gaz, supposée uniforme dans la cheminée et de g, accélération de la
pesanteur. Le champ des vitesses est supposé uniforme sur une section droite perpendiculaire a 1’écoulement.

(**) (BCPST1) Les pressions en bas et au sommet de la cheminée sont celles de ’air extérieur. En supposant 1’air en équilibre
statique et la température extérieure uniforme T, relier la pression extérieure a 1’altitude z. On écrira cette relation en fonction
de la pression au sol Py,,;, de la masse molaire M,;,, de la constante de gaz parfaits R, de la température extérieure T, et de g.
On notera p,;,- la masse volumique de 1’air.

La hauteur de la cheminée est h = 30m. Le gaz a l'intérieur de la cheminée est a la température uniforme T; = 200°C. Le gaz est
constitué de 72% d’air chaud, de 12% de vapeur d’eau et de 16% de dioxyde de carbone (pourcentages molaires). La température de
Iair extérieur est Ty = 10°C. On donne : Mgy = 29 g.mol™ ; Mg, = 18 g.mol™" : Mo, = 44 g.mol™" ; P,y = 1,00 bar et R =
8,31 /).mol L. K1

3.

(*) (BCPSTI) Calculer AP puis la masse molaire des gaz ainsi que leur masse volumique au niveau du bas de la cheminée.
Justifier que cette valeur peut étre considérée constante dans la cheminée.

(*) Calculer la vitesse vs du gaz a la sortie de la cheminée. Des mesures effectuées montrent que cette vitesse est en réalité
inférieure. Quelle raison peut étre envisagée pour I’expliquer ?

(*) Le débit volumique des gaz a évacuer est de 1,0.10° m3.h~1. Quel doit étre le diamétre intérieur de la cheminée
cylindrique ?
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Exercice 4 : Puissance d’une éolienne

On s'intéresse a I'é¢tude du rendement d'une éolienne. On ' g, p, sl B W sl S,.P,
rappelle qu'une éolienne est un dispositif qui transforme ) //"‘ =
I'énergie cinétique du vent en énergie mécanique, le plus > T Y o
souvent transformée ensuite en énergie électrique. L'éolienne 24— Nl W ¥

de surface S est située a l'origine O d'un axe Oz horizontal.
La figure ci-dessous montre I'écoulement d'air de part et S~}
d'autre de 1'éolienne :

On note v, et v, la vitesse du vent en amont et en aval de 1'éolienne. On suppose également que la pression est égale a la pression
atmosphérique P, sur ces deux surfaces S; et S, : P, = P, = P;. On se place dans les conditions d'application de la relation de Bernoulli.
On note p la masse volumique de l'air. On considére une ligne de courant ou figure quatre points : A; loin de I'éolienne en amont, A’ ;
immédiatement avant I'éolienne, A}, immédiatement aprés et A, loin de 1'éolienne en aval.
1. (¥) Justifier, a l'aide de la conservation du débit volumique qu'il ne peut y avoir de discontinuité de la vitesse au niveau de
I'¢olienne. On notera v cette vitesse.
C'est donc une discontinuité de pression de part et d'autre de 1'éolienne qui permet son fonctionnement.
2. (*) Ecrire la relation de Bernoulli entre A, et A} puis entre A, et A,. Pourquoi ne peut-on pas écrire la relation de Bernoulli
entre les points A et A ?
(*) En déduire l'expression de la différence de pression P — P, en fonction de p, v, et v,.
4. (*) La force exercée par le vent sur les pales de I'éolienne vaut F = (P’ ; — P’ ;) X S. En déduire ’expression de la puissance
P développée par cette force sur les pales.

w
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Des mesures expérimentales exploitées a I’aide du script python
ci-dessous permettent de déterminer le temps de vidange d’une i
baignoire, robinet fermé et bonde ouverte : 12 minutes. Il aura
fallu 8 minutes pour la remplir.

La baignoire déborde-t-elle si on ouvre a la fois le robinet et la
bonde ? A T’aide de la réponse du script, discuter le modele
simple utilisé.

1 #importation des bibliothéques T~ $
2 import numpy as np

3 import matplotlib.pyplot as plt
4 import numpy.random as rd

2

6 # résultats expérimentaux

7t = np.array([0,60,120,180,240,300,360]) #t en s

8z = np.array([1,0.86,0.68,0.55,0.47,0.34,0.26]) #hauteur en m

9Y = np.sqrt(z) #changement de variable
10

11 #Incertitudes-type

12 t_z = 0.005 #Précision sur la mesure de la hauteur z en m
13u_z = t_z/np.sqrt(3) #Incertitude-type sur z

14 u_Y = 0.5%Yx(u_z/z) #Incertitude-type sur Y+#x1/2 obtenue par formule de propagation
15

16 # modélisation du nuage de points: courbe expérimentale
17 p = np.polyfit("A COMPLETER") #régression linéaire appropriée

18 Yreg = "A COMPLETER" #Equation de la droite de régression

19 print("La droite de régression a pour équation y=", p[@], "t+",pl[1])

p]

21 # représentation graphique

22 plt.plot(t,Y, 'rx', label='points expérimentaux") #tracé des points expérimentaux
23 plt.plot(t,Yreg, 'b-',label="droite de régression') #tracé de la droite de régression

24 plt.errorbar(t, ¥, yerr = u_Y, fmt=",k") #représentation des barres d'incertitudes
25 plt.grid()

26 plt.xlabel('Temps (s)')

27 plt.ylabel('racine carrée de la Hauteur d\'eau (m~1/2)')

28 plt.title(' vidange de Torricelli')

29 plt.legend()

30 plt.show()

31

32 # détermination du temps de vidange a partir de la droite de régression linéaire

33 T2= "A COMPLETER"

34 print('Temps de vidage obtenu & partir de la droite de régression linéaire:',T2,' secondes')

Exécution du code :

La droite de régression a pour équation y= -0.0013677875780569494 t+ 0.9993682532311917
vidange de Torricelli
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Temps de vidage obtenu & partir de la droite de régression linéaire: 730.6458029476138 secondes

Remarque : les barres d’incertitudes (ligne 24) sont trop petites pour étre visibles sur le graphique.
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Exercice 5 : Ecoulement de Couette plan

e Soit I’écoulement laminaire d un fluide visqueux incompressible (masse volumique p=1(° kg.m"
3), newtonien, de viscosité dynamique 1 de champ de vitesse U = v(2) Uy
o [’écoulement s’effectue entre deux parois horizontales planes fixes, paralléles d’équation z

=+-e/2.
o Pour que le fluide s écoule suivant (Ox) on impose une pression P, en entrée (x=0) plus grande
. Pe—P.
que celle en sortie P, (en x =€). On notera K = %.

e  On considere que I’écoulement est stationnaire et on néglige les forces de pesanteur. La
pression est considérée comme uniforme suivant [’axe (Oz).

. . s d?
1. (***) Etablir, par un bilan de quantité de mouvement que EZ = - %
2. (**) Montrer alors que le champ des vitesses s’écrit : v(z) = X

2 ((5) - Zz). Donner le profil du champ des vitesses entre les

2
deux parois.
e . r K
(***) Montrer que le débit volumique D, s’écrit : D,, = e ae’
(*) En déduire I’expression de la vitesse moyenne de I’écoulement voy.

5. (*)Ondonne n=10.10°Pl; e=2,0mm,; K=3,0.10° Pa.m™. L’hypothése d’un écoulement laminaire est-elle vérifiée ?

Exercice 6 : Ecoulement de Poiseuille cylindrique

Données :
- Masse volumique de la glace : pg = 0,917 X 103 kg -m™3
- Norme de I’accélération de la pesanteur : g=98m-s?

Du fait de leur plasticité, les glaciers s’écoulent lentement sous 1’effet de la gravité avec une vitesse d’écoulement trés variable selon la
pente, la topographie du lit rocheux ou I’épaisseur de la glace. La vitesse moyenne est de I’ordre de quelques centimétres a quelques
dizaines de centimétres par jour, le record revenant au glacier Kangerdlugssuaq dans le Groénland ou la vitesse moyenne atteinte est de
14 kilométres par an. On se propose d’étudier, sur la base du modéle de Poiseuille, I’écoulement d’un glacier sous 1’effet de la gravité.

On considére, dans un premier temps, 1’écoulement stationnaire d’un fluide visqueux R

newtonien de viscosité dynamique 7, incompressible de masse volumique p, dans une % Me— V(M) :
conduite cylindrique horizontale de rayon R, de longueur L et d’axe de symétrie de % ' A — L. x
révolution (Ox). La pression en entrée de la conduite cylindrique est notée P,, et celle en \ €x

. \ . . . L. AP
sortie P; < P,. Il régne alors dans la conduite un gradient de pression supposé uniforme, -

,o0u AP = P, — P,. En un point M de ’écoulement, la vitesse d’écoulement du fluide s’écrit : B(M) = v(r)e,, ou r est la distance entre
le point M et I’axe (Ox) et e, un vecteur unitaire orientant 1’axe (0x) (voir figure ci-dessus). On admet que le fluide adhére aux parois
fixes de la conduite, ce qui se traduit par : v(r = R) = 0.

On consideére le systéme fermé s’appuyant sur le cylindre de rayon r < R, d’axe de symétrie de révolution (Ox) et de longueur L.
1. (***) Etablir, a partir d’un bilan de quantité de mouvement, que la vitesse d’écoulement dans la conduite cylindrique :
R*—7r? AP_,
—X—e¢
4n L=

2. (***) En déduire I’expression du débit de volume @ en fonction de R, 1 et ATP

F(M) =

On choisit de modéliser 1’écoulement de la Mer de glace par I’écoulement de Poiseuille d’un fluide visqueux newtonien s’écoulant dans
la moiti¢ inférieure d’une conduite cylindrique sous le seul effet de la gravité.

3. (***) Indiquer le systéme a définir ainsi que les forces extérieures a considérer pour établir ce profil de vitesse. On négligera

2_.2 .
R4nr X (pggsina)ey,

les forces s’exercant sur la surface libre de la glace. Montrer que le profil de vitesse s’écrit : (M) =

ou e, est dirigé dans le sens de ’écoulement suivant I’axe de pente voisine de & = 11°.

4. (**) Exprimer selon ce modele, la vitesse maximale vp,q, de I’écoulement en fonction de R, 7, pg, g et a.

5. (*) La vitesse maximale d’écoulement du glacier est mesurée & 107 m.an"'. Estimer alors ’ordre de grandeur de la viscosité
dynamique de la glace selon le modéle d’étude proposé. Comparer I’ordre de grandeur obtenu avec la valeur estimée usuelle

de la viscosité de la glace de I’ordre de 1013 Pa - s.

6. (*) Exprimer puis donner la valeur numérique du nombre de Reynolds de I’écoulement. On considérera que la vitesse moyenne
de I’écoulement vaut la moitié de la vitesse maximale de I’écoulement. Préciser alors la nature de 1’écoulement. Commenter.
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Exercice 7 : Circulation sanguine et résistances hydrauliques

On considere I’écoulement d’un fluide réel dans un cylindre de rayon R et de longueur L. La viscosité dynamique du fluide s’écoulant
dans ce cylindre sera notée 1. On considere les conditions de validité de la loi de Poiseuille respectées. On notera AP=P, —P,. >0, la

différence de pression imposée entre l’entrée et la sortie de ce capillaire.

1.

a. (*) Déterminer la vitesse moyenne vmoy de 1’écoulement du sang dans un capillaire ou = 4,5.10° PI, R = 10 um, L = 1,0
mm et AP =1,0.10° Pa.

b. (*) Sachant que la masse volumique du sang est p = 1,05.10° kg.m?, quelle est la nature de 1’écoulement ?

c. (*) La vitesse moyenne du sang dans une artére ot R = 2,0 mm et L = 10 cm vaut vy = 2,6 m.s”. Calculer le débit volumique
et la chute de pression régnant dans ’artére. Quelle est la nature de 1’écoulement ?

a. (*) Rappeler I’expression de la résistance hydraulique Ry en fonction de L, R et .

Py P, P Py
b. Un trongon cylindrique est constitué de trois portions

. . ~ A
cylindriques, de méme axe, de rayons ri, r> et r3. Les pertes de l 7y saain
charge au niveau des raccordements sont négligées. Les débits 4 i !
. ’ . . !
volumiques Q4, Q1, Q> et Op sont définis au travers des sections ;
enxg=0x;=L,x>2=L;+Lretx;=1 )

x=L+L, x=1

I |
- (*) Donner la relation existant entre Qa, Q1, Q2 et Qg.

- (*) Exprimer la résistance hydraulique de I’ensemble en fonction de Rni, Ri et Ry, les résistances hydrauliques de chacun
des trongons.
- (**) Exprimer P; — P, en fonction de Po — Pg, Rni, Rz et Rys.

c. (*) Un pontage est réalisé afin de réparer une
artére sténosée. Le pontage consiste a
contourner [’obstacle a l’aide d’une tubulure
mise en paralléle sur la totalité du trongon. Ry
est la résistance hydraulique du pontage de 7
longueur 1.

pontage

R, <n

Etablir I’expression de la  résistance
hydraulique Ry, équivalente de I’artére pontée.

e — — = = =

Exercice 8 : Viscosimétre a écoulement

Un liquide, de viscosité dynamique 1, de viscosité cinématique v et de masse
volumique p, s’écoule d’un récipient cylindrique de rayon R, vers un tube
cylindrique horizontal de longueur L et de rayon r << R. s
L’écoulement est suffisamment lent pour étre considéré comme quasi-permanent. = |n

2R

(*) Expliquer pourquoi on peut écrire avec une bonne approximation : P(O) =Py + S — f S
pgh, ou Py est la pression atmosphérique. o L

(*) Rappeler I’expression du débit volumique Q, donné par la loi de Poiseuille. On donnera les conditions de validité de cette
loi. Montrer alors que Q peut étre mis sous la forme Q(t) = A h(t). On exprimera le coefficient de proportionnalité A en fonction
deg,r,L,netp.

(**) En appliquant la conservation du débit volumique, établir I’équation différentielle vérifiée par h(t) et en déduire la loi de
vidange h(t) sachant qu’a I’instant initial 4(1=0)=h,

(**) Au bout de T = 13 minutes 30 secondes, la hauteur du dissolvant n’est plus que le tiers de la hauteur initiale ho. En déduire
la mesure de la viscosité cinématique de ce dissolvant a la température 20°C de I’expérience. Données : hg = 50 cm ; r = 0,5
mm; R=20cm;L=50cm;p=720 kg.m’3.
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Exercice 9 : Perméameétre

Un perméametre est représenté sur la figure ci-contre. Une épaisseur L = 20 cm d’un milieu poreux constitué
de sable est introduite dans un cylindre de section S = 3,0.1072 m? d’axe Oz vertical ascendant. L origine des
ordonnées est prise a la surface supérieure du sable. Le cylindre est fermé en bas par une toile métallique h(t)
recouverte de coton.
On verse de l'eau au sommet du sable (I’eau est un fluide incompressible newtonien de viscosité dynamique eau
n = 1,0.107° Pa.s et de masse volumique p = 1,0.10° kg.m>). Lorsque la premiére goutte d’eau a traversé le
perméameétre, la hauteur d’eau est hg = 1,0 m. On observe ensuite une diminution de la hauteur d’eau h (1).
L’expérience est réalisée avec h > 0 (ce qui signifie que le sable est toujours recouvert d’eau).

L écoulement est suffisamment lent pour étre supposé quasi permanent et le gradient de pression est supposé 5
uniforme dans chacun des fluides. \ /
Le sable est considéré comme un milieu poreux contenant n pores cylindriques par unité de surface. Chaque

pore a une aire A.

(*) Exprimer la porosité ®@ du sable en fonction des données de 1’énoncé.

. . . . k(AP . .
(**) Justifier que le débit volumique dans le sable s’écrit: O =S —(T +p gj . On donnera I’expression de k en fonction des
n

données de 1’énoncé.
pgh

L
(**) Déterminer 1’équation différentielle vérifiée par h (t) en introduisant un temps t caractéristique. Résoudre cette ¢quation.
Déterminer la valeur de h (t—+o). Commentez cette valeur.
(**) La surface z = 0 du sable s’asséche au bout d’un temps to = 366 s. En déduire la valeur du temps t, puis celle de la
perméabilité & du sable.

(*) Justifier que le gradient de pression dans le sable peut s’écrire avec une bonne approximation : A =

Exercice 10 : Vidange d’un bassin par un siphon

[ S

®° N

Un bassin rectangulaire est alimenté en permanence par de
I’eau, fluide parfait incompressible de masse volumique p, avec _‘ A

o
:
=

un debit volumique constant D = 30 L/s (voir Figure).

La surface totale du bassin est S = 20 m?. Un siphon de diamétre
20 cm en B (section s) assure la vidange. Il se termine en C
(section s1) par un ajutage de diametre 10 cm situé a l’extrémité
d’un trongon horizontal dont I’axe sera pris comme origine des
cotes verticales. 1 hy
Le siphon comporte en E (section s;) un étranglement de i A
diametre 7,0 cm.

Le haut du siphon est a la cote h; = 3,0 m. Le fond du bassin est lui a la cote hg =1,0 m.

On donne : = 1000 kg/m> ; g = 10 m/s? et P4 = 1,0 bar = Pamosphérigue-

On indique que si z < d, le siphon est désamorcé tandis qu’il se réamorce si z = h,. Initialement, z = h;.

(*) Calculer le débit sortant initial, D¢, en C lorsque z = h;.

(*) En déduire la cote z,, pour laquelle les débits D et D¢ sont égaux.

(***) Quelle est qualitativement 1’évolution de la cote z de la surface libre de I’eau en fonction du temps ? Donner
I’allure de la courbe z(t) dans le cas ou z > z,, et dans le cas ou z < z,,,.

e fipe s . dz N
(***) Montrer que I’équation différentielle vérifiée par z s’écrit sous la forme : N = bdt ou a et b sont des
a—z

constantes que 1’on exprimera en fonction de D, S, s; et g.
dx

Jx-a
cas ou d = 2,0 m. Quel temps, ti, met le plan d’eau pour atteindre sa cote minimale ?

(**) Déterminer le temps t» de remontée de la surface libre jusqu’a ’état initial défini par z = h;.

(**) En déduire la période des oscillations de I’eau dans la cuve.

(**) Quelle est, en fonction de z, la pression en E ? Quelle est la condition sur H pour que cette pression ne soit jamais
négative ?

(**) On donne la primitive : j =2Jx+2a ln<\/;—a) +cste (ou a< Jx estune constante). On se place dans le
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Exercice 11 : Ecoulement dans un vaisseau sanguin

On s’intéresse d’abord a I’écoulement horizontal du sang dans un seul vaisseau sanguin qu’on assimile a une conduite cylindrique
indéformable de diamétre d et de longueur L (voir figure 2 ci-dessous). Le sang est un fluide incompressible de masse volumique ps =
1,06 x 103 kg - m~3 et de viscosité dynamique égale a ng = 1,6 X 1073 Pa - s.

L

Figure 2 - Vaisseau sanguin assimilable a une conduite horizontale cylindrique.
Le sang s’écoule vers les x croissants.

L’écoulement du sang est supposé stationnaire et laminaire. On note AP = P(x = 0) — P(x = L) > 0 la différence de pression entre le
début et la fin du vaisseau sanguin considéré.
Le champ des vitesses est de la forme ¥ = v(r) u, en coordonnées cylindriques d’axe (0x).
S . . o L T . d
Le sang est considéré comme un fluide newtonien. Ainsi, la force de viscosité que le sang a I’extérieur du cylindre de rayon r < 3 d’axe
av(r) —
ar Y

1. Soit le systéme ouvert constitué du fluide contenu dans le cylindre de rayon r < g et de longueur L.

(Ox) et de longueur L exerce sur le sang situé a I’intérieur de ce cylindre s’écrit : ﬁvisc = 2nrlng

a. (**)Réaliser un bilan de quantité de mouvement sur le systéme fermé s’appuyant sur ce systéme ouvert entre 1’instant t et
I’instant t+dt.

b. (**) En déduire que la sommes des forces extérieures s’exergant sur ce systéme est ¢gale a 0.

.- , . . . . . ar e, o AP d? —
2. (**)Enutilisant le résultat de la question précédente, monter que le champ des vitesses du fluide s’écrit : ¥ = M—PL (T -1 u,.
S
Représenter ensuite le champ des vitesses dans une section droite de 1’artére.

(***) En déduire I’expression du débit de volume D,, en fonction des données de 1’énoncé.
L . . 128 7)sL

(**) Montrer que la résistance hydraulique s’exprime sous la forme : R;, = Trf

Dans la suite du sujet, on souhaite prendre en compte 1’ensemble des vaisseaux sanguins de la circulation systémique pour estimer la

perte de charge entre la sortie du cceur gauche et I’entrée du ceeur droit.

Partie C : prise en compte de ’ensemble des vaisseaux sanguins
On se propose de calculer la perte de charge due aux artérioles (figure 3) afin d’effectuer une comparaison avec les données réelles. On
supposera que la loi de Poiseuille peut s’appliquer dans tous les vaisseaux sanguins.

Capillaires
pulmonaires

S

Artére pulmonaire l Veine pulmonaire
r»Veine cave —» — Aorte T

Ceoeur Coeur R
droit gauche | Artéres

Veines e

Veinules - freeen Avtérioles

Capillaires : —QL
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Figure 3 - Schéma simplifié¢ présentant les différents types de vaisseaux rencontrés par le sang lors de son écoulement. Le nombre de

Table 1 - Caractéristiques des différents vaisseaux de la circulation systémique. La pression moyenne est donnée en entrée des
vaisseaux sanguins. Ces données sont estimées pour un individu allongé et au repos. Cet individu est jeune et en bonne santé.

S.
6.
7.

vaisseaux, les diametres, et les longueurs ne sont pas a 1’échelle.

. Pression L Longueur .
Position Diameétre moyen . Vitesse moyenne
moyenne typique
(mmig) (mm) (mm) (m/2
Circulation systémique
Atrium gauche 5
Ventricule gauche 100
Aorte 100 20 500 2,65 x 107!
Artéres 95 4 500 2,50 x 107!
Artérioles 86 0,05 10 2,80 x 1072
Capillaires 30 0,008 1 0,50 x 1073
Veinules 10 0,02 2 1,10 x 1073
Veines 4 5 25 5,50 x 1073
Veine cave 3 30 500 1,20 x 107!
Atrium droit 3

1

(**) Justifier que le nombre d’artérioles dans le corps humain vaut environ N =~ 1,5 x 10°.
(**) En prenant D,, = 5,0 L - min~

(**) En utilisant, entre autres, la derriére colonne de la table 1, calculer le débit de volume du sang dans ’aorte D,,,.

, estimer les pertes de charge APart dans les artérioles. Comparer cette valeur a celle

pouvant étre déterminée a partir de la table 1. Commenter.
(*) Déterminer le régime d’écoulement dans les artérioles.



