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TD Physique n°8 : Dynamique des fluides 

 

Exercice 1 : Vidange d’un récipient à l’aide d’un siphon 

• Pour vider l'eau d'une citerne, on utilise un siphon formé d'un tube coudé de section intérieure 

S= 7 cm2 terminé par un embout de section s= 5 cm2 (cf figure). On indique que la section de 

la surface libre (en A) est très grande devant S et s. 

• On supposera le régime permanent et on prendra Po = 1 bar pour la pression atmosphérique, 

 = 103 kg.m-3 pour la masse volumique de l’eau et g = 9,81 m.s-2. On considérera l’eau comme 

un fluide parfait et incompressible. 

 

1. (*) Exprimer puis calculer la vitesse d'écoulement en F.  

2. (*) Calculer en 𝑚3 par heure le débit du siphon. 

3. (*) Calculer la pression en C. À quelle condition, sur 𝑃𝑐 un siphon tel que celui-ci peut-il fonctionner ? 

 

 

Exercice 2 : Vidange d’un réservoir en régime lentement variable 

 

• Un récipient cylindrique de hauteur H est rempli d’eau, liquide parfait et incompressible, jusqu’à 

une hauteur h. Le sommet du récipient de section S est ouvert à l’air libre. La pression 

atmosphérique régnant pendant l’expérience est P0. 

• A l’instant initial, on ouvre l’orifice circulaire (B), de section s, au fond du réservoir ; cette section 

est considérée comme petite devant S, la section du sommet de la clepsydre. 

• On note vA la vitesse de descente de la surface libre et vB la vitesse de sortie de l’eau. 

• Données : H = 50 cm, h = 40 cm, S = 2830 cm², s = 1 cm² et g = 10 m/s². 

 

1. (*) Exprimer la vitesse vB(t) en fonction de g et z(t), côte de la surface libre. 

2. (**) Exprimer l’équation différentielle à laquelle obéit z(t). En déduire l’expression traduisant les variations de z(t).  

3. (*) Déterminer la durée T de vidange du réservoir. 

 

 

Exercice 3 : Cheminée 

 

On s’intéresse à l’évacuation des effluents gazeux par une cheminée d’usine. Tous les gaz considérés obéissent à l’équation d’état des 

gaz parfaits ; on notera respectivement 𝑇, 𝑃 et 𝜇, la température, la pression et la masse volumique. A la base de la cheminée considérée, 

la vitesse initiale des effluents gazeux est nulle. 

 

1. (*) En admettant que l’écoulement de ces gaz est incompressible et stationnaire, exprimer la vitesse d’éjection 𝑣𝑆 des gaz en 

haut de la cheminée en fonction de la hauteur ℎ de la cheminée, de la différence de pression Δ𝑃 = 𝑃𝑠𝑜𝑙 − 𝑃(ℎ) entre le bas et 

le haut de cette cheminée, de la masse volumique 𝜇 des gaz, supposée uniforme dans la cheminée et de 𝑔, accélération de la 

pesanteur. Le champ des vitesses est supposé uniforme sur une section droite perpendiculaire à l’écoulement. 

 

2. (**) (BCPST1) Les pressions en bas et au sommet de la cheminée sont celles de l’air extérieur. En supposant l’air en équilibre 

statique et la température extérieure uniforme 𝑇0, relier la pression extérieure à l’altitude 𝑧. On écrira cette relation en fonction 

de la pression au sol 𝑃𝑠𝑜𝑙 , de la masse molaire 𝑀𝑎𝑖𝑟 , de la constante de gaz parfaits 𝑅, de la température extérieure 𝑇0 et de 𝑔. 

On notera 𝜇𝑎𝑖𝑟  la masse volumique de l’air.  

 

La hauteur de la cheminée est ℎ = 30𝑚. Le gaz à l’intérieur de la cheminée est à la température uniforme 𝑇𝑖 = 200°𝐶. Le gaz est 

constitué de 72% d’air chaud, de 12% de vapeur d’eau et de 16% de dioxyde de carbone (pourcentages molaires). La température de 

l’air extérieur est 𝑇0 = 10°𝐶. On donne : 𝑀𝑎𝑖𝑟 = 29 𝑔. 𝑚𝑜𝑙−1 ; 𝑀𝑒𝑎𝑢 = 18 𝑔. 𝑚𝑜𝑙−1 : 𝑀𝐶𝑂2
= 44 𝑔. 𝑚𝑜𝑙−1 ; 𝑃𝑠𝑜𝑙 = 1,00 𝑏𝑎𝑟 et 𝑅 =

8,31 𝐽. 𝑚𝑜𝑙−1. 𝐾−1. 

 

3. (*) (BCPST1) Calculer Δ𝑃 puis la masse molaire des gaz ainsi que leur masse volumique au niveau du bas de la cheminée. 

Justifier que cette valeur peut être considérée constante dans la cheminée. 

 

4. (*) Calculer la vitesse 𝑣𝑆 du gaz à la sortie de la cheminée. Des mesures effectuées montrent que cette vitesse est en réalité 

inférieure. Quelle raison peut être envisagée pour l’expliquer ? 

 

5. (*) Le débit volumique des gaz à évacuer est de 1,0. 105 𝑚3. ℎ−1. Quel doit être le diamètre intérieur de la cheminée 

cylindrique ? 
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Exercice 4 : Puissance d’une éolienne 

On s'intéresse à l'étude du rendement d'une éolienne. On 

rappelle qu'une éolienne est un dispositif qui transforme 

l'énergie cinétique du vent en énergie mécanique, le plus 

souvent transformée ensuite en énergie électrique. L'éolienne 

de surface S est située à l'origine O d'un axe Oz horizontal. 

La figure ci-dessous montre l'écoulement d'air de part et 

d'autre de l'éolienne : 

 

On note 𝑣1 et 𝑣2 la vitesse du vent en amont et en aval de l'éolienne. On suppose également que la pression est égale à la pression 

atmosphérique 𝑃0 sur ces deux surfaces 𝑆1 et 𝑆2 ∶ 𝑃1 = 𝑃2 = 𝑃0. On se place dans les conditions d'application de la relation de Bernoulli. 

On note 𝜌 la masse volumique de l'air. On considère une ligne de courant où figure quatre points : 𝐴1 loin de l'éolienne en amont, 𝐴′ 1 

immédiatement avant l'éolienne, 𝐴2
′  immédiatement après et 𝐴2 loin de l'éolienne en aval. 

1. (*) Justifier, à l'aide de la conservation du débit volumique qu'il ne peut y avoir de discontinuité de la vitesse au niveau de 

l'éolienne. On notera 𝑣 cette vitesse. 

C'est donc une discontinuité de pression de part et d'autre de l'éolienne qui permet son fonctionnement. 

2. (*) Écrire la relation de Bernoulli entre 𝐴1 et 𝐴1
′  puis entre 𝐴2

′  et 𝐴2. Pourquoi ne peut-on pas écrire la relation de Bernoulli 

entre les points 𝐴1
′  et 𝐴2

′  ? 

3. (*) En déduire l'expression de la différence de pression 𝑃1
′ − 𝑃2

′  en fonction de 𝜌, 𝑣1 et 𝑣2. 

4. (*) La force exercée par le vent sur les pâles de l'éolienne vaut 𝐹 = (𝑃′ 1 − 𝑃′ 2) × 𝑆. En déduire l’expression de la puissance 

𝒫 développée par cette force sur les pâles. 
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___________________________________________________________________________________________________________ 

 

Des mesures expérimentales exploitées à l’aide du script python 

ci-dessous permettent de déterminer le temps de vidange d’une 

baignoire, robinet fermé et bonde ouverte :  12 minutes. Il aura 

fallu 8 minutes pour la remplir. 

 

La baignoire déborde-t-elle si on ouvre à la fois le robinet et la 

bonde ? A l’aide de la réponse du script, discuter le modèle 

simple utilisé. 

 

 

 
 

Exécution du code : 

 
 

Remarque : les barres d’incertitudes (ligne 24) sont trop petites pour être visibles sur le graphique.  
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Exercice 5 : Ecoulement de Couette plan 

• Soit l’écoulement laminaire d’un fluide visqueux incompressible (masse volumique = kg.m-

3), newtonien, de viscosité dynamique  de champ de vitesse 𝑣⃗ = 𝑣(𝑧)𝑢𝑥⃗⃗⃗⃗⃗. 
• L’écoulement s’effectue entre deux parois horizontales planes fixes, parallèles d’équation z 

=+- e/2.  

• Pour que le fluide s’écoule suivant (Ox) on impose une pression 𝑃𝑒 en entrée (x=0) plus grande 

que celle en sortie 𝑃𝑠 (en x =ℓ). On notera 𝐾 =
𝑃𝑒−𝑃𝑠

ℓ
. 

• On considère que l’écoulement est stationnaire et on néglige les forces de pesanteur. La 

pression est considérée comme uniforme suivant l’axe (Oz). 

 

1. (***) Etablir, par un bilan de quantité de mouvement que 
𝑑2𝑣

𝑑𝑧2 = −
𝐾

𝜂
.  

2. (**) Montrer alors que le champ des vitesses s’écrit : 𝑣(𝑧) =
𝐾

2𝜂
((

𝑒

2
)

2

− 𝑧2). Donner le profil du champ des vitesses entre les 

deux parois. 

3. (***) Montrer que le débit volumique Dv s’écrit : 𝐷𝑣 =
𝐾

12𝜂
𝑎𝑒3 

4. (*) En déduire l’expression de la vitesse moyenne de l’écoulement vmoy.  

5. (*) On donne  = 1,0.10-3 Pl ; e = 2,0 mm ; K = 3,0.102 Pa.m-1. L’hypothèse d’un écoulement laminaire est-elle vérifiée ? 

 

Exercice 6 : Ecoulement de Poiseuille cylindrique 

Données :  

- Masse volumique de la glace :    𝜌𝑔 = 0,917 × 103 𝑘𝑔 ∙ 𝑚−3 

- Norme de l’accélération de la pesanteur :   𝑔 = 9,8 𝑚 ∙ 𝑠−2 

 

Du fait de leur plasticité, les glaciers s’écoulent lentement sous l’effet de la gravité avec une vitesse d’écoulement très variable selon la 

pente, la topographie du lit rocheux ou l’épaisseur de la glace. La vitesse moyenne est de l’ordre de quelques centimètres à quelques 

dizaines de centimètres par jour, le record revenant au glacier Kangerdlugssuaq dans le Groënland où la vitesse moyenne atteinte est de 

14 kilomètres par an. On se propose d’étudier, sur la base du modèle de Poiseuille, l’écoulement d’un glacier sous l’effet de la gravité. 

 

On considère, dans un premier temps, l’écoulement stationnaire d’un fluide visqueux 

newtonien de viscosité dynamique 𝜂, incompressible de masse volumique 𝜌, dans une 

conduite cylindrique horizontale de rayon 𝑅, de longueur 𝐿 et d’axe de symétrie de 

révolution (𝑂𝑥). La pression en entrée de la conduite cylindrique est notée 𝑃𝑒, et celle en 

sortie 𝑃𝑠 < 𝑃𝑒. Il règne alors dans la conduite un gradient de pression supposé uniforme, 
Δ𝑃

𝐿
 

, où Δ𝑃 = 𝑃𝑒 − 𝑃𝑠. En un point 𝑀 de l’écoulement, la vitesse d’écoulement du fluide s’écrit : 𝑣⃗(𝑀) = 𝑣(𝑟)𝑒𝑥⃗⃗ ⃗⃗ , où 𝑟 est la distance entre 

le point 𝑀 et l’axe (𝑂𝑥) et 𝑒𝑥⃗⃗ ⃗⃗  un vecteur unitaire orientant l’axe (𝑂𝑥) (voir figure ci-dessus). On admet que le fluide adhère aux parois 

fixes de la conduite, ce qui se traduit par : 𝑣(𝑟 = 𝑅) = 0. 

 

On considère le système fermé s’appuyant sur le cylindre de rayon 𝑟 < 𝑅, d’axe de symétrie de révolution (Ox) et de longueur 𝐿.  

1. (***) Etablir, à partir d’un bilan de quantité de mouvement, que la vitesse d’écoulement dans la conduite cylindrique : 

𝑣⃗(𝑀) =
𝑅2 − 𝑟2

4𝜂
×

Δ𝑃

𝐿
𝑒𝑥⃗⃗ ⃗⃗  

2. (***) En déduire l’expression du débit de volume 𝑄 en fonction de 𝑅, 𝜂 et 
Δ𝑃

𝐿
 

 

On choisit de modéliser l’écoulement de la Mer de glace par l’écoulement de Poiseuille d’un fluide visqueux newtonien s’écoulant dans 

la moitié inférieure d’une conduite cylindrique sous le seul effet de la gravité. 

 

3. (***) Indiquer le système à définir ainsi que les forces extérieures à considérer pour établir ce profil de vitesse. On négligera 

les forces s’exerçant sur la surface libre de la glace. Montrer que le profil de vitesse s’écrit : 𝑣⃗(𝑀) =
𝑅2−𝑟2

4𝜂
× (𝜌𝑔𝑔𝑠𝑖𝑛𝛼)𝑒𝑥⃗⃗ ⃗⃗ , 

où 𝑒𝑥⃗⃗ ⃗⃗  est dirigé dans le sens de l’écoulement suivant l’axe de pente voisine de 𝛼 = 11°. 

 

4. (**) Exprimer selon ce modèle, la vitesse maximale 𝑣𝑚𝑎𝑥  de l’écoulement en fonction de 𝑅, 𝜂, 𝜌𝑔, 𝑔 et 𝛼. 

 

5. (*) La vitesse maximale d’écoulement du glacier est mesurée à 107 m.an-1. Estimer alors l’ordre de grandeur de la viscosité 

dynamique de la glace selon le modèle d’étude proposé. Comparer l’ordre de grandeur obtenu avec la valeur estimée usuelle 

de la viscosité de la glace de l’ordre de 1013 𝑃𝑎 ∙ 𝑠.  

 

6. (*) Exprimer puis donner la valeur numérique du nombre de Reynolds de l’écoulement. On considérera que la vitesse moyenne 

de l’écoulement vaut la moitié de la vitesse maximale de l’écoulement. Préciser alors la nature de l’écoulement. Commenter. 
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Exercice 7 : Circulation sanguine et résistances hydrauliques 

 

On considère l’écoulement d’un fluide réel dans un cylindre de rayon R et de longueur L. La viscosité dynamique du fluide s’écoulant 

dans ce cylindre sera notée . On considère les conditions de validité de la loi de Poiseuille respectées. On notera P = Pe − Ps  0 , la 

différence de pression imposée entre l’entrée et la sortie de ce capillaire. 

 

1.  a. (*) Déterminer la vitesse moyenne vmoy de l’écoulement du sang dans un capillaire où 𝜂 = 4,5.10-3 Pl, R = 10 𝜇m, L = 1,0 

mm et ΔP = 1,0.103 Pa. 

 

 b. (*) Sachant que la masse volumique du sang est 𝜌 = 1,05.103 kg.m-3, quelle est la nature de l’écoulement ? 

 

 c. (*) La vitesse moyenne du sang dans une artère où R = 2,0 mm et L = 10 cm vaut vmoy = 2,6 m.s-1. Calculer le débit volumique 

et la chute de pression régnant dans l’artère. Quelle est la nature de l’écoulement ? 

 

2.  a. (*) Rappeler l’expression de la résistance hydraulique Rh en fonction de L, R et . 

 

 b. Un tronçon cylindrique est constitué de trois portions 

cylindriques, de même axe, de rayons r1, r2 et r3. Les pertes de 

charge au niveau des raccordements sont négligées. Les débits 

volumiques QA, Q1, Q2 et QB sont définis au travers des sections 

en x0 = 0, x1 = L1, x2 = L1 + L2 et x3 = l.  

 

- (*) Donner la relation existant entre QA, Q1, Q2 et QB. 

- (*) Exprimer la résistance hydraulique de l’ensemble en fonction de Rh1, Rh2 et Rh3, les résistances hydrauliques de chacun 

des tronçons. 

- (**) Exprimer P1 – P2 en fonction de PA – PB, Rh1, Rh2 et Rh3. 

 

c. (*) Un pontage est réalisé afin de réparer une 

artère sténosée. Le pontage consiste à 

contourner l’obstacle à l’aide d’une tubulure 

mise en parallèle sur la totalité du tronçon. RHp 

est la résistance hydraulique du pontage de 

longueur l.  

 

Établir l’expression de la résistance 

hydraulique RHe équivalente de l’artère pontée. 

 

 

Exercice 8 : Viscosimètre à écoulement 

 

• Un liquide, de viscosité dynamique 𝜂, de viscosité cinématique  et de masse 

volumique 𝜌, s’écoule d’un récipient cylindrique de rayon R, vers un tube 

cylindrique horizontal de longueur L et de rayon r << R. 

• L’écoulement est suffisamment lent pour être considéré comme quasi-permanent. 

 

1. (*) Expliquer pourquoi on peut écrire avec une bonne approximation : P(O) = P0 + 

𝜌gh, où P0 est la pression atmosphérique. 

 

2. (*) Rappeler l’expression du débit volumique Q, donné par la loi de Poiseuille. On donnera les conditions de validité de cette 

loi. Montrer alors que Q peut être mis sous la forme Q(t) = A h(t). On exprimera le coefficient de proportionnalité A en fonction 

de g, r, L, 𝜂 et 𝜌. 

 

3. (**) En appliquant la conservation du débit volumique, établir l’équation différentielle vérifiée par h(t) et en déduire la loi de 

vidange h(t) sachant qu’à l’instant initial h(t=0)=h0 

 

4. (**) Au bout de T = 13 minutes 30 secondes, la hauteur du dissolvant n’est plus que le tiers de la hauteur initiale h0. En déduire 

la mesure de la viscosité cinématique de ce dissolvant à la température 20°C de l’expérience. Données : h0 = 50 cm ; r = 0,5 

mm ; R = 2,0 cm ; L = 50 cm ; 𝜌 = 720 kg.m-3. 
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Exercice 9 : Perméamètre  

• Un perméamètre est représenté sur la figure ci-contre. Une épaisseur L = 20 cm d’un milieu poreux constitué 

de sable est introduite dans un cylindre de section S = 3,0.10-2 m2 d’axe Oz vertical ascendant. L’origine des 

ordonnées est prise à la surface supérieure du sable. Le cylindre est fermé en bas par une toile métallique 

recouverte de coton. 

• On verse de l’eau au sommet du sable (l’eau est un fluide incompressible newtonien de viscosité dynamique 

 = 1,0.10-3 Pa.s et de masse volumique 𝜌 = 1,0.103 kg.m-3). Lorsque la première goutte d’eau a traversé le 

perméamètre, la hauteur d’eau est h0 = 1,0 m. On observe ensuite une diminution de la hauteur d’eau h (t). 

L’expérience est réalisée avec h > 0 (ce qui signifie que le sable est toujours recouvert d’eau). 

• L’écoulement est suffisamment lent pour être supposé quasi permanent et le gradient de pression est supposé 

uniforme dans chacun des fluides. 

• Le sable est considéré comme un milieu poreux contenant n pores cylindriques par unité de surface. Chaque 

pore a une aire A. 

 

1. (*) Exprimer la porosité  du sable en fonction des données de l’énoncé. 

2. (**) Justifier que le débit volumique dans le sable s’écrit : 


 
= + 

 

k P
Q S g

L
. On donnera l’expression de k en fonction des 

données de l’énoncé. 

3. (*) Justifier que le gradient de pression dans le sable peut s’écrire avec une bonne approximation : 


=
P gh

L L
 

4. (**) Déterminer l’équation différentielle vérifiée par h (t) en introduisant un temps 𝜏 caractéristique. Résoudre cette équation. 

Déterminer la valeur de h (t→+). Commentez cette valeur. 

5. (**) La surface z = 0 du sable s’assèche au bout d’un temps t0 = 366 s. En déduire la valeur du temps 𝜏, puis celle de la 

perméabilité k du sable. 

 

Exercice 10 : Vidange d’un bassin par un siphon 

 

• Un bassin rectangulaire est alimenté en permanence par de 

l’eau, fluide parfait incompressible de masse volumique μ, avec 

un débit volumique constant D = 30 L/s (voir Figure).  

• La surface totale du bassin est S = 20 m2. Un siphon de diamètre 

20 cm en B (section s) assure la vidange. Il se termine en C 

(section s1) par un ajutage de diamètre 10 cm situé à l’extrémité 

d’un tronçon horizontal dont l’axe sera pris comme origine des 

cotes verticales. 

• Le siphon comporte en E (section s2) un étranglement de 

diamètre 7,0 cm. 

• Le haut du siphon est à la côte h1 = 3,0 m. Le fond du bassin est lui à la côte h0 =1,0 m.  

• On donne : μ = 1000 kg/m3 ; g = 10 m/s2 et PA = 1,0 bar = Patmosphérique.  

• On indique que si z < d, le siphon est désamorcé tandis qu’il se réamorce si z = h1. Initialement, z = h1. 

 

1. (*) Calculer le débit sortant initial, DC, en C lorsque z = h1.  

2. (*) En déduire la côte 𝑧𝑚 pour laquelle les débits D et DC sont égaux. 

3. (***) Quelle est qualitativement l’évolution de la côte 𝑧 de la surface libre de l’eau en fonction du temps ? Donner 

l’allure de la courbe 𝑧(𝑡) dans le cas où 𝑧 > 𝑧𝑚 et dans le cas où 𝑧 < 𝑧𝑚. 

4. (***) Montrer que l’équation différentielle vérifiée par z s’écrit sous la forme : 
dz

a − z
= bdt où a et b sont des 

constantes que l’on exprimera en fonction de D, S, s1 et g.  

5. (**) On donne la primitive : ( )2 2 ln= + − +
−


dx

x a x a cste
x a

 (où a  x  est une constante). On se place dans le 

cas où d = 2,0 m. Quel temps, t1, met le plan d’eau pour atteindre sa cote minimale ? 

6. (**) Déterminer le temps t2 de remontée de la surface libre jusqu’à l’état initial défini par z = h1. 

7. (**) En déduire la période des oscillations de l’eau dans la cuve. 

8. (**) Quelle est, en fonction de z, la pression en E ? Quelle est la condition sur H pour que cette pression ne soit jamais 

négative ? 
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Exercice 11 : Ecoulement dans un vaisseau sanguin 

 

On s’intéresse d’abord à l’écoulement horizontal du sang dans un seul vaisseau sanguin qu’on assimile à une conduite cylindrique 

indéformable de diamètre 𝑑 et de longueur 𝐿 (voir figure 2 ci-dessous). Le sang est un fluide incompressible de masse volumique 𝜌𝑆 =
 1,06 ×  103 𝑘𝑔 · 𝑚−3 et de viscosité dynamique égale à 𝜂𝑆 = 1,6 × 10−3 𝑃𝑎 · 𝑠. 

 
Figure 2 - Vaisseau sanguin assimilable à une conduite horizontale cylindrique.  

Le sang s’écoule vers les 𝑥 croissants. 

 

L’écoulement du sang est supposé stationnaire et laminaire. On note Δ𝑃 = 𝑃(𝑥 = 0) − 𝑃(𝑥 = 𝐿) > 0 la différence de pression entre le 

début et la fin du vaisseau sanguin considéré.  

Le champ des vitesses est de la forme 𝑣⃗ = 𝑣(𝑟) 𝑢𝑥⃗⃗⃗⃗⃗ en coordonnées cylindriques d’axe (𝑂𝑥). 

Le sang est considéré comme un fluide newtonien. Ainsi, la force de viscosité que le sang à l’extérieur du cylindre de rayon 𝑟 ≤ 
𝑑

2
  d’axe 

(𝑂𝑥) et de longueur 𝐿 exerce sur le sang situé à l’intérieur de ce cylindre s’écrit : 𝐹⃗𝑣𝑖𝑠𝑐 = 2𝜋𝑟𝐿𝜂𝑆
𝑑𝑣(𝑟)

𝑑𝑟
 𝑢𝑥⃗⃗⃗⃗⃗ . 

1. Soit le système ouvert constitué du fluide contenu dans le cylindre de rayon r ≤ 
𝑑

2
  et de longueur L. 

a. (**) Réaliser un bilan de quantité de mouvement sur le système fermé s’appuyant sur ce système ouvert entre l’instant t et 

l’instant t+dt.  

b. (**) En déduire que la sommes des forces extérieures s’exerçant sur ce système est égale à  0⃗⃗.  

 

2. (**) En utilisant le résultat de la question précédente, monter que le champ des vitesses du fluide s’écrit : 𝑣⃗ =
∆𝑃

4𝜂𝑆𝐿
(

𝑑2

4
− 𝑟2) 𝑢𝑥⃗⃗⃗⃗⃗.  

Représenter ensuite le champ des vitesses dans une section droite de l’artère. 

3. (***) En déduire l’expression du débit de volume 𝐷𝑣  en fonction des données de l’énoncé. 

4. (**) Montrer que la résistance hydraulique s’exprime sous la forme : 𝑅ℎ =  
128 𝜂𝑆𝐿

𝜋𝑑4 . 

 

Dans la suite du sujet, on souhaite prendre en compte l’ensemble des vaisseaux sanguins de la circulation systémique pour estimer la 

perte de charge entre la sortie du cœur gauche et l’entrée du cœur droit. 

 

Partie C : prise en compte de l’ensemble des vaisseaux sanguins   

On se propose de calculer la perte de charge due aux artérioles (figure 3) afin d’effectuer une comparaison avec les données réelles. On 

supposera que la loi de Poiseuille peut s’appliquer dans tous les vaisseaux sanguins. 
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Figure 3 - Schéma simplifié présentant les différents types de vaisseaux rencontrés par le sang lors de son écoulement. Le nombre de 

vaisseaux, les diamètres, et les longueurs ne sont pas à l’échelle. 

 

 
Table 1 - Caractéristiques des différents vaisseaux de la circulation systémique. La pression moyenne est donnée en entrée des 

vaisseaux sanguins. Ces données sont estimées pour un individu allongé et au repos. Cet individu est jeune et en bonne santé. 

 

5. (**) En utilisant, entre autres, la derrière colonne de la table 1, calculer le débit de volume du sang dans l’aorte 𝐷𝑣𝑎.  

6. (**) Justifier que le nombre d’artérioles dans le corps humain vaut environ 𝑁 ≃ 1,5 × 106. 

7. (**) En prenant 𝐷𝑣𝑎 = 5,0 𝐿 · 𝑚𝑖𝑛−1, estimer les pertes de charge Δ𝑃art dans les artérioles. Comparer cette valeur à celle 

pouvant être déterminée à partir de la table 1. Commenter. 

8. (*) Déterminer le régime d’écoulement dans les artérioles. 


