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Problème n°1 : mesure de la densité du moût 
 

1. La poussée d’Archimède 𝜋⃗  est la résultante des forces pressantes exercées par le fluide sur le 
corps immergé (voir BCPST1).  

 
2. 𝒎 = 𝒎𝒆 + 𝝆𝑽 
3. Système {enceinte + fluide} de masse 𝑚 

Bilan des forces : poids 𝑃⃗ = −𝑚𝑔𝑢𝑧⃗⃗⃗⃗ , force de rappel du ressort 𝐹 𝑟 = −𝑘(𝑥 − ℓ0)𝑢𝑥⃗⃗ ⃗⃗  
 
Étude de l’équilibre : 

𝑃⃗ + 𝐹 𝑟 = 0⃗  
En projection sur (O𝑥) : −𝑘(𝑥𝑒𝑞 − ℓ0) = 0 donc 𝒙é𝒒 = 𝓵𝟎 

 
Étude du mouvement : 

𝑃⃗ + 𝐹 𝑟 = 𝑚𝑎  
 En projection sur (O𝑥) : 

−𝑘(𝑥 − ℓ0) = 𝑚𝑥̈ 
 

𝑥̈ +
𝑘

𝑚
𝑥 =

𝑘

𝑚
ℓ0 

On pose 𝝎𝟎 = √𝒌/𝒎 

𝒙̈ + 𝝎𝟎
𝟐𝒙 = 𝝎𝟎

𝟐𝓵𝟎 
 

4. La période propre de l’oscillateur s’exprime en fonction des données du problème :  

𝑇0 = 2𝜋/𝜔0 =  2𝜋√𝑚/𝑘 =  2𝜋 √(𝑚𝑒 + 𝜌𝑉)/𝑘 

 

En réorganisant : 𝝆 =
𝒌

𝟒𝝅𝟐𝑽
 𝑻𝟎

𝟐 −
𝒎𝒆

𝑽
 

Ainsi : 𝑨 =
𝒌

𝟒𝝅𝟐𝑽
 et 𝑩 = 

𝒎𝒆

𝑽
 

 
 

5. Système {enceinte + fluide} de masse 𝑚 

Bilan des forces : poids, force de rappel du ressort et la force de forçage sinusoïdale  𝐹 . 
 
L’étude de la position d’équilibre est inutile car identique à la situation précédente. 
Le PFD donne :  

𝑃⃗ + 𝐹 𝑟 + 𝐹 = 𝑚𝑎  
 En projection sur (O𝑥) : 

−𝑘(𝑥 − ℓ0) + 𝐹𝑒𝑥 cos(𝜔𝑡)  = 𝑚𝑥̈ 
 

𝑥̈ +
𝑘

𝑚
𝑥 =

𝑘

𝑚
ℓ0 +

𝐹𝑒𝑥
𝑚

cos(𝜔𝑡) 

On pose 𝝎𝟎 = √𝒌/𝒎 
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𝑥̈ + 𝜔0
2𝑥 = 𝜔0

2ℓ0 +
𝐹𝑒𝑥
𝑚

cos(𝜔𝑡) 

 

Or 𝑋(𝑡) = 𝑥(𝑡) − ℓ0 donc 𝑋̇(𝑡) = 𝑥̇(𝑡) donc 𝑋̈(𝑡) = 𝑥̈(𝑡) 
Il vient :  

𝑿̈ + 𝝎𝟎
𝟐𝑿 =

𝑭𝒆𝒙

𝒎
𝐜𝐨𝐬(𝝎𝒕) 

 
 

6. 𝑋(𝑡) =  𝑋𝑚 cos(𝜔𝑡 + 𝜑) donc 𝑋 = 𝑋𝑚 𝑒𝑗𝜔𝑡 = 𝑋𝑚 𝑒𝑗𝜑𝑒𝑗𝜔𝑡 

En dérivant deux fois, il vient :  𝑋̈ =  −𝜔2 𝑋 

𝐹(𝑡) =  𝐹𝑒𝑥 cos(𝜔𝑡) donc 𝐹 = 𝐹𝑒𝑥  𝑒
𝑗𝜔𝑡 = 𝐹𝑒𝑥  𝑒

𝑗𝜔𝑡 

 

𝑋 est solution de l’équation différentielle : −𝜔2𝑋 + 𝜔0
2𝑋 =

𝐹

𝑚
 

 

−𝜔2𝑋𝑚 + 𝜔0
2𝑋𝑚 =

𝐹𝑒𝑥

𝑚
 

𝑋𝑚 =
𝐹𝑒𝑥

𝑚
·

1

𝜔0
2 − 𝜔2

 

 

𝑿𝒎 = |𝑿𝒎| =
𝑭𝒆𝒙

𝒎
·

𝟏

|𝝎𝟎
𝟐 − 𝝎𝟐|

 

 
Si 𝝎 → 𝝎𝟎 alors 𝑿𝒎 → ∞ ce qui est impossible. Ici le modèle ne tient pas compte des 
frottements.  
 

7. 𝜌1 = 𝐴𝑇1
2 − 𝐵 (1) 

𝜌2 = 𝐴𝑇2
2 − 𝐵 (2) 

(1)-(2) donne 𝜌1 − 𝜌2 = 𝐴(𝑇1
2 − 𝑇2

2) = 
 

Ainsi  𝑨 =
𝝆𝟏−𝝆𝟐

𝑻𝟏
𝟐−𝑻𝟐

𝟐 et 𝑩 =
𝝆𝟏−𝝆𝟐

𝑻𝟏
𝟐−𝑻𝟐

𝟐  𝑻𝟏
𝟐 − 𝝆𝟏 

 
AN :  

𝑨 =
984,7−1,207

(972×10−6)2−(707,8×10−6)2
= 𝟐, 𝟐 × 𝟏𝟎𝟗 𝒌𝒈 · 𝒎−𝟑 · 𝒔−𝟐  

𝑩 = 2,2 × 109 × (972 × 10−6)2 − 1,207 = 𝟏, 𝟏 × 𝟏𝟎𝟑 𝒌𝒈 · 𝒎−𝟑  
 

8. On lit la fréquence de résonance sur le graphe 𝑓𝑟 = 1029,5 𝐻𝑧 
Cette fréquence est proche de la fréquence propre 𝑓0. 
 

𝜌 = 𝐴𝑇0
2 − 𝐵 =

𝐴

𝑓0
2 − 𝐵 

AN :  

𝝆 =
2,2 × 109

1029,52
− 1,1 × 103 = 𝟗𝟖𝟏 𝒌𝒈 · 𝒎−𝟑   

 
D’après la table de correspondance, TAV = 13 % 
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Problème n°2 : étude de deux oscillateurs 
 

9. 𝓵(𝒕) = 𝒛(𝒕) + 𝓵é𝒒  

 

10. 𝑬𝒑(𝒛) = −𝒎𝒈𝒛 +
𝟏

𝟐
𝒌(𝒛 + 𝓵é𝒒 − 𝓵𝟎)

𝟐 + 𝒄𝒔𝒕𝒆    

 

11. 
𝑑𝐸𝑝(𝑧)

𝑑𝑧
= −𝑚𝑔 + 𝑘(𝑧 + ℓé𝑞 − ℓ0)  

 

(
𝑑𝐸𝑝(𝑧)

𝑑𝑧
)
𝑧=𝑧é𝑞=0

= 0  donc 𝓵é𝒒 = 𝓵𝟎 +
𝒎𝒈

𝒌
 

 

12. TEM : 
𝑑𝐸𝑚

𝑑𝑡
= 0 car le mouvement est conservatif 

𝑑𝐸𝑐

𝑑𝑡
+

𝑑𝐸𝑝

𝑑𝑡
= 0 

𝑑

𝑑𝑡
(
1

2
𝑚𝑧̇(𝑡)2 − 𝑚𝑔𝑧(𝑡) +

1

2
𝑘(𝑧(𝑡) + ℓé𝑞 − ℓ0)

2
+ 𝑐𝑠𝑡𝑒) = 0 

 

𝑚𝑧̇𝑧̈ − 𝑚𝑔𝑧̇ + 𝑘𝑧̇(𝑧 + ℓé𝑞 − ℓ0) = 0 

 

La solution 𝑧̇ = 0 est éliminée car elle correspond à l’immobilité. On remplace ℓé𝑞 = ℓ0 +
𝑚𝑔

𝑘
 

𝑧̈ +
𝑘

𝑚
𝑧 = 0 

On pose 𝝎𝟎 = √𝒌/𝒎 

𝒛̈ + 𝝎𝟎
𝟐𝒛 = 𝟎 

 
13. 𝑧(𝑡) = 𝐴 · 𝑐𝑜𝑠(𝜔0𝑡) + 𝐵 · 𝑠𝑖𝑛(𝜔0𝑡)  

𝑧̇(𝑡) = −𝐴𝜔0 · 𝑠𝑖𝑛(𝜔0𝑡) + 𝐵𝜔0 · 𝑐𝑜𝑠(𝜔0𝑡)   
A t = 0, 𝑧(𝑡 = 0) = 𝐿 − ℓé𝑞 = 𝐴  et 𝑧̇(𝑡 = 0) = 0 =  𝐵𝜔0   

Donc 𝒛(𝒕) = (𝑳 − 𝓵é𝒒) · 𝒄𝒐𝒔(𝝎𝟎𝒕) 

 
14. 𝑧(𝑡) > −ℓé𝑞 

(𝐿 − ℓé𝑞) · 𝑐𝑜𝑠(𝜔0𝑡) > −ℓé𝑞  

Comme −1 ≤ 𝑐𝑜𝑠(𝜔0𝑡) ≤ +1. On peut considérer que la valeur minimale de (𝐿 − ℓé𝑞) ·

𝑐𝑜𝑠(𝜔0𝑡) est −𝐿 + ℓé𝑞 

Il vient : −𝐿 + ℓé𝑞 > −ℓé𝑞  

Ainsi : 𝐿 < 2ℓé𝑞 

𝑳 < 𝟐(𝓵𝟎 +
𝒎𝒈

𝒌
) 

 

15. ℰp(𝑥) = ℰp,él(𝑥) =
1

2
𝑘(ℓ − ℓ0)

2 + 𝑐𝑠𝑡 

 ℓ = √ℓ𝑐
2 + 𝑥2  d’après le théorème de Pythagore. 

𝓔𝐩(𝒙) =
𝟏

𝟐
𝒌(√𝓵𝒄

𝟐 + 𝒙𝟐 − 𝓵𝟎)
𝟐 + 𝒄𝒔𝒕 

 

16. A l’équilibre, (
𝑑𝓔𝐩(𝒙)

𝑑𝑥
)
𝑥=𝑥é𝑞

= 0 

𝑑ℰp(𝑥)

𝑑𝑥
= 𝑘𝑥 −

𝑘ℓ0𝑥

√ℓc
2 + 𝑥2
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𝑘𝑥é𝑞 −
𝑘ℓ0𝑥é𝑞

√ℓc
2 + 𝑥é𝑞

2

= 0 

𝑥é𝑞(𝑘 −
𝑘ℓ0

√ℓc
2 + 𝑥é𝑞

2

) = 0 

 

Il existe trois solutions : 𝒙é𝒒 = 𝟎 , 𝒙é𝒒 = √𝓵𝟎
𝟐 − 𝓵𝐜

𝟐 =  𝒙𝟎 et 𝒙é𝒒 = −√𝓵𝟎
𝟐 − 𝓵𝐜

𝟐 = −𝒙𝟎 

 
17. L’énergie mécanique initiale doit rester inférieure au maximum local d’énergie potentielle : 

𝐸𝑚,0 < ℰp(𝑥 = 0) 

𝑬𝒎,𝟎 <
𝟏

𝟐
𝒌(𝓵𝒄 − 𝓵𝟎)

𝟐 + 𝐜𝐬𝐭𝐞 

 
18. Sans vitesse initiale, l’énergie mécanique initiale est égale à l’énergie potentielle initiale :  

𝐸𝑚,0 = ℰp(𝑥 = 0). On trace la droite d’équation ℰp = ℰp(𝑥 = 0). Comme l’ensemble des 

positions possibles obéit à ℰp(𝑥) < 𝐸𝑚,0 , on observe l’existence d’une abscisse 𝑥𝑚𝑎𝑥 à ne pas 

dépasser si l’on souhaite conserver une oscillation autour de la position d’équilibre 𝑥é𝑞 = 𝑥0. 

 
 

 
 
Pour trouver 𝑥0,𝑚𝑎𝑥 , il faut résoudre l’équation ℰp(𝑥 = 0) = ℰp(𝑥 = 𝑥0,𝑚𝑎𝑥 ) 

(√ℓ𝑐
2 − ℓ0)

2 = (√ℓ𝑐
2 + 𝑥0,𝑚𝑎𝑥 

2 − ℓ0)
2 

 
Deux solutions :  

√ℓ𝑐
2 − ℓ0 = √ℓ𝑐

2 + 𝑥0,𝑚𝑎𝑥 
2 − ℓ0 implique 𝑥0,𝑚𝑎𝑥 = 0  

 Ou  

√ℓ𝑐
2 − ℓ0 = − √ℓ𝑐

2 + 𝑥0,𝑚𝑎𝑥 
2 + ℓ0 

 

√ℓ𝑐
2 + 𝑥0,𝑚𝑎𝑥 

2 = 2ℓ0 − ℓ𝑐 

ℓ𝑐
2 + 𝑥0,𝑚𝑎𝑥 

2 = (2ℓ0 − ℓ𝑐)
2 = 4ℓ0

2 + 2ℓ0ℓ𝑐 + ℓ𝑐
2 

𝑥0,𝑚𝑎𝑥 = √4 − +2ℓ0ℓ𝑐 

 
19. Dans le cas A, on observe que 𝑥(𝑡) et 𝑥̇(t) ne sont pas des fonctions sinusoïdales : l’oscillateur 

n’est pas harmonique. 
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20. 𝑥0,𝑚𝑎𝑥 = √4ℓ0
2 − 2ℓ0ℓ𝑐 = 1,9 𝑚 

 
 
Cas A : 𝑥(0) >  𝑥0,𝑚𝑎𝑥  

La masse a assez d’énergie mécanique pour passer le maximum local n’énergie potentielle à 
𝑥 = 0 : la masse oscille dans les deux puits de potentiel. L’ensemble des positions possibles 
obéit à ℰp(𝑥) < 𝐸𝑚,0 . 

 

 
 

Cas B : 𝑥(0) <  𝑥0,𝑚𝑎𝑥  
La masse n’a pas assez d’énergie mécanique pour passer le maximum locale n’énergie 
potentielle à 𝑥 = 0 : la masse oscille autour de l’abscisse 𝑥0. L’ensemble des positions 
possibles obéit à ℰp(𝑥) < 𝐸𝑚,0 . 
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Problème n°3 : le trioxyde de soufre 

 

21. X : T, P, 𝑥𝑆𝑂2(𝑔),𝑒𝑞
, 𝑥𝑂2(𝑔),𝑒𝑞

, 𝑥𝑆𝑂3(𝑔),𝑒𝑞
  

Y : 𝑥𝑆𝑂2(𝑔),𝑒𝑞
+ 𝑥𝑂2(𝑔),𝑒𝑞

+ 𝑥𝑆𝑂3(𝑔),𝑒𝑞
= 1  𝐾0(𝑇) = 𝑄𝑟𝑒𝑞 

𝑣 = 𝑋 − 𝑌 = 5 − 2 = 3. L’opérateur peut fixer trois paramètres intensifs sans rompre l’état 
d’équilibre 

22. 2𝑛𝑂2(𝑔),0
= 𝑛𝑆𝑂2(𝑔),0

⟹ 2𝑛𝑂2(𝑔),𝑒𝑞
= 𝑛𝑆𝑂2(𝑔),𝑒𝑞

⟹ 2𝑥𝑂2(𝑔),𝑒𝑞
= 𝑥𝑆𝑂2(𝑔),𝑒𝑞

  

Si de plus la température et la pression sont fixées, alors pour ce système particulier : 𝑣′ = 𝑣 −
3 = 0. Le système est alors entièrement déterminé à l’équilibre et n’a plus aucun degré de 
liberté. 

 

23. D’après la figure 1, l’avancement à l’équilibre augmente, à une température donnée, avec la 
pression. Une augmentation isotherme de la pression est donc un atout pour la synthèse du 
trioxyde de soufre. 

 

24. D’après la figure 1, l’avancement à l’équilibre diminue, à une pression donnée, avec la 
température. Une augmentation isobare de la température est donc un obstacle pour la 
synthèse du trioxyde de soufre. Il faut donc se placer à basse température pour optimiser la 
synthèse, ce qui nécessite l’utilisation d’un catalyseur pour qu’elle se réalise suffisamment 
rapidement. 

 

25. 𝑄𝑟 =
𝑎𝑆𝑂3(𝑔)

𝑎𝑆𝑂2(𝑔)
(𝑎𝑂2(𝑔)

)

1
2

=

𝑝𝑆𝑂3(𝑔)

𝑝0

𝑝𝑆𝑂2(𝑔)

𝑝0 (
𝑝𝑂2(𝑔)

𝑝0 )

1
2

=
𝑝𝑆𝑂3(𝑔)

(𝑝0)
1
2

𝑝𝑆𝑂2(𝑔)
(𝑝𝑂2(𝑔)

)

1
2

=
𝑥𝑆𝑂3(𝑔)

𝑥𝑆𝑂2(𝑔)
(𝑥𝑂2(𝑔)

)

1
2

(
𝑝0

𝑃
)

1

2
  

⟹ 𝑄𝑟 =
𝑛𝑆𝑂3(𝑔)

(𝑛𝑡𝑜𝑡)
1
2

𝑛𝑆𝑂2(𝑔)
(𝑛𝑂2(𝑔)

)

1
2

(
𝑝0

𝑃
)

1

2
  

 

26. Avant perturbation, le système est initialement à l’équilibre : 𝑄𝑟,𝑎 = 𝑄𝑟,𝑒𝑞 = 𝐾0(𝑇) 

Δ𝑟𝐺𝑏 = 𝑅𝑇𝑙𝑛 (
𝑄𝑟,𝑏

𝐾0(𝑇)
)  

𝑷 ↗⟹ 𝑄𝑟 ↘⟹ 𝑄𝑟,𝑏 < 𝑄𝑟,𝑖 = 𝑄𝑟,𝑒𝑞 = 𝐾0(𝑇)  

⟹ Δ𝑟𝐺𝑏 < 0 : le système évolue dans le direct de formation de trioxyde de soufre 
confirmant la réponse à la question 3. 

 

27. Relation de Van’t Hoff : 
𝑑(𝑙𝑛𝐾0)

𝑑𝑇
=

Δ𝑟𝐻
0

𝑅𝑇2  

Δ𝑟𝐻
0 < 0 ⟹

𝑑(𝑙𝑛𝐾0)

𝑑𝑇
< 0 ⟹ 𝑙𝑛𝐾0 ↘ si 𝑇 ↗ ⟹ 𝑲0 ↘ si 𝑻 ↗ 

 

28. Avant perturbation, le système est initialement à l’équilibre : 𝑄𝑟,𝑎 = 𝑄𝑟,𝑒𝑞 = 𝐾0(𝑇𝑎) 
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Δ𝑟𝐺𝑏 = 𝑅𝑇𝑏𝑙𝑛 (
𝑄𝑟,𝑏

𝐾0(𝑇𝑏)
) avec 𝑄𝑟,𝑏 = 𝑄𝑟,𝑎 = 𝑄𝑟,𝑒𝑞 = 𝐾0(𝑇𝑎) (composition et pression 

fixées) 

⟹ Δ𝑟𝐺𝑏 = 𝑅𝑇𝑏𝑙𝑛 (
𝐾0(𝑇𝑎)

𝐾0(𝑇𝑏)
)  

Or 𝐾0 ↘ si 𝑇 ↗⟹ 𝐾0(𝑇𝑏) < 𝐾0(𝑇𝑎) avec 𝑇𝑏 > 𝑇𝑎 

⟹ Δ𝑟𝐺𝑏 > 0 : le système évolue dans le sens indirect confirmant la réponse à la question 4. 

 
29. Ligne 18 :  

return((nSO3_0+x)*(nSO2_0+nO2_0+nN2_0+nSO30-0.5*x)**(0.5)/(nSO2_0-x)/(nO2_0-
0.5*x)/P**0.5 

Ligne 26 :  

ximax=min(nSO3_0,2*nO2_0) 

30. A l’état initial, 𝑄𝑟,𝑖 = 0 (𝑛𝑆𝑂3,𝑖 = 0 ; 𝑛𝑆𝑂2,𝑖 = 0,09 𝑚𝑜𝑙 ; 𝑛𝑂2,𝑖 = 0,12 𝑚𝑜𝑙 ; 𝑛𝑡𝑜𝑡,𝑖 =

1,0 𝑚𝑜𝑙), éliminant les figures B et D.  

Le programme permet d’atteindre la valeur de l’avancement lorsque 𝑄𝑟 = 𝐾, la figure B 
correspond donc à l’exécution du programme donné dans l’Annexe.  

31. Par lecture graphique, le taux d’avancement à l’état final vaut : 𝜏𝑆𝑂3,𝑒𝑞 ≈ 0,7 ⟹ 𝜉𝑒𝑞 =

0,7 × 0,09 = 0,063 𝑚𝑜𝑙  

On en déduit à la sortie du premier lit :  

𝑛𝑆𝑂2,𝑒𝑞 = 𝑛𝑆𝑂2,𝑖 − 𝜉𝑒𝑞 = 0,09 − 0,063 = 0,027 𝑚𝑜𝑙  

𝑛𝑂2,𝑒𝑞 = 𝑛𝑂2,𝑖 −
1

2
𝜉𝑒𝑞 = 0,12 − 0,5 × 0,063 = 0,089 𝑚𝑜𝑙  

𝑛𝑆𝑂3,𝑒𝑞 = 𝜉𝑒𝑞 = 0,063 𝑚𝑜𝑙  

𝑛𝑁2,𝑒𝑞 = 𝑛𝑁2,𝑖 = 0,79 𝑚𝑜𝑙  
 
Problème n°4 : Autour du phénol  

 

32. Un acide est d’autant plus fort que sa base conjuguée est stable. Si le tert-butanolate ne 

presente aucune stabilisation particuliere, le phénolate, lui, est stabilisé par effet mésomère :  

 
Cela explique que le pKa du couple PhOH/PhO- est largement inférieur au pKa du couple 

tBuOH/tBuO-. 

 

33. Equation de la réaction de dosage : 

𝑷𝒉𝑶𝑯(𝒂𝒒) + 𝑯𝑶−(𝒂𝒒) = 𝑷𝒉𝑶−(𝒂𝒒) + 𝑯2𝑶(𝓵) 𝑲0 = 104,1 ≫ 1 

⟹ thermodynamiquement favorable et quantitative 

 

L’autre réaction possible avec le tert-butanol s’écrit :  
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𝒕𝑩𝒖𝑶𝑯(𝒂𝒒) + 𝑯𝑶−(𝒂𝒒) = 𝒕𝑩𝒖𝑶−(𝒂𝒒) + 𝑯2𝑶(𝓵) 𝑲0 = 10−2,5 ≪ 1 :  

⟹ thermodynamiquement défavorable : la soude ne dose pas le tert-butanol et seul le 

phénol est dosé 

 

34. A l’équivalence : 
𝑛𝑃ℎ𝑂𝐻,𝑡𝑖𝑡𝑟é

1
=

𝑛𝐻𝑂−,𝑣𝑒𝑟𝑠é

1
⟹ 𝐶𝑃ℎ𝑂𝐻𝑉0 = 𝐶𝑠𝑜𝑢𝑑𝑒𝑉𝑠𝑜𝑢𝑑𝑒,𝐸 ⟹ 𝐶𝑃ℎ𝑂𝐻 =

𝐶𝑠𝑜𝑢𝑑𝑒𝑉𝑠𝑜𝑢𝑑𝑒,𝐸

𝑉0
 

AN : 𝑪𝑷𝒉𝑶𝑯 =
0,500×7,5

10
= 0,38 𝒎𝒐𝒍 ∙ 𝑳−1 

 

35. 𝒎𝑷𝒉𝑶𝑯 = 𝑪𝑷𝒉𝑶𝑯𝑽𝑴(𝑷𝒉𝑶𝑯)    AN : 𝒎𝑷𝒉𝑶𝑯 = 0,38 × 1,0 ×

94,1 = 36 𝒈 

𝒘𝑷 =
𝒎𝑷𝒉𝑶𝑯

𝒎
= 0,36  

𝒙𝑷 =

𝒎𝑷𝒉𝑶𝑯
𝑴(𝑷𝒉𝑶𝑯)

𝒎𝑷𝒉𝑶𝑯
𝑴(𝑷𝒉𝑶𝑯)

+
𝒎𝒕𝑩𝒖𝑶𝑯

𝑴(𝒕𝑩𝒖𝑶𝑯)

  AN : 𝒙𝑷 =
36

94,1
36

94,1
+

64

74,1

= 0,31 

 

36. A, C et E : points eutectiques.  

37. B et D : composés définis (phénol)n(tert-butanol)m avec 
𝑛

𝑚
=

𝑥𝑝

𝑥𝑡
=

𝑥𝑝

1−𝑥𝑝
 

Point B : 
𝑛

𝑚
=

0,332

1−0,332
≈ 0,5  𝑛 = 1 et 𝑚 = 2 : (phénol)(tert-butanol)2 

Point D : 
𝑛

𝑚
=

0,671

1−0,671
≈ 2   𝑛 = 2 et 𝑚 = 1 : (phénol)2(tert-butanol) 

 

38. 1 : phase liquide L 

5 : B(s) + L 

6 : B(s) + D(s) 

7 : D(s) + L 

 

39. Le premier grain de solide apparaît à environ 17°C. Le solide qui apparaît est B(s). 

40. a. 

 
b. X :  T, P, 𝑥𝐵(𝑠),𝑒𝑞, 𝑥𝑡(𝑠),𝑒𝑞, 𝑥𝑝(ℓ),𝑒𝑞, 𝑥𝑡(ℓ),𝑒𝑞  

Y :  𝑥𝑝(ℓ),𝑒𝑞 + 𝑥𝑡(ℓ),𝑒𝑞 = 1  

1er grain de B(s) 

1er grain de tBuOH(s) 

dernière goutte de liquide 

L 

L + B(s) 

L + B(s) + tBuOH(s) 
B(s) + tBuOH(s) 
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  𝑥𝐵(𝑠),𝑒𝑞 = 1  

𝑥𝑡(𝑠),𝑒𝑞 = 1  

  2𝑡𝐵𝑢𝑂𝐻(ℓ) + 𝑃ℎ𝑂𝐻(ℓ) ⇋ 𝐵(𝑠) 

  𝑡𝐵𝑢𝑂𝐻(ℓ) ⇋ 𝑡𝐵𝑢𝑂𝐻(𝑠) 

𝑣 = 𝑋 − 𝑌 = 6 − 5 = 1 ⟹ 𝒗′ = 𝒗 − 1 = 0, la pression étant fixée 

 

41. On se trouve dans le domaine B(s) + L, donc constituants physico-chimiques sont présents : 

B(s) + PhOH(ℓ) + tBuOH(ℓ) 

𝑛𝐿 = 𝑛𝑡𝑜𝑡 ×
𝑀𝑆

𝐿𝑆
= 1,25 ×

0,332 − 0,31

0,332 − 0,20
= 0,21 𝑚𝑜𝑙 

𝑛𝑝(ℓ) = 𝑥𝑝(ℓ) × 𝑛𝐿 = 0,20 × 0,17 = 0,042 𝑚𝑜𝑙 𝑚𝑝(ℓ) = 𝑛𝑝(ℓ) × 𝑀(𝑃ℎ𝑂𝐻) =

3,9 𝑔 

𝑛𝑡(ℓ) = 𝑛𝐿 − 𝑛𝑝(ℓ) = 0,17 𝑚𝑜𝑙   𝑚𝑡(ℓ) = 𝑛𝑡(ℓ) × 𝑀(𝑡𝐵𝑢𝑂𝐻) =

12,3 𝑔 

𝑛𝑝,𝑡𝑜𝑡 = 𝑥𝑝 × 𝑛𝑡𝑜𝑡 = 0,31 × 1,25 = 0,39 𝑚𝑜𝑙 𝑚𝑝 = 36,5 𝑔 

𝑛𝑡,𝑡𝑜𝑡 = 1,25 − 0,39 = 0,86 𝑚𝑜𝑙   𝑚𝑡 = 63,9 𝑔 

Dans le composé défini : 𝑛𝑝,𝐵 = 𝑛𝑝,𝑡𝑜𝑡 − 𝑛𝑝(ℓ) = 0,35 𝑚𝑜𝑙 

Or d’après la formule du composé défini B = (phénol)(tert-butanol)2, on en déduit : 𝑛𝐵(𝑠) =

𝑛𝑝,𝐵 

⟹ 𝑚𝐵(𝑠) = 𝑛𝐵(𝑠) × 𝑀((𝑃ℎ𝑂𝐻)(𝑡𝐵𝑢𝑂𝐻)2) = 83,7 𝑔 

En refroidissant jusqu’à la température du point 3, on pourra récupérer le composé B solide 
pur, qui est un mélange des deux espèces, phénol et tert-butanol. Les dernières gouttes de 
liquide auront pour composition celle du point eutectique 3. Au-delà de la température du 
point 3, les deux solides B et tert-butanol seront formés. La cristallisation fractionnée ne 
permet donc pas de séparer le tert-butanol et le phénol dans ce mélange puisqu’au mieux, ce 
sera le compose B. 


