Exercice 1 : Des égalités et inégalités : Vrai-Faux Soient \vec{x} , \vec{y} et \vec{z} des vecteurs de \mathbb{R}^n . Soient α , β des réels.

$(1)\alpha \vec{x}.\vec{y} + \beta \vec{z}.\vec{y} = (\alpha \vec{x} + \beta \vec{z}).\vec{y}$	Vrai/Faux
$(2)\vec{x}.\vec{y} + \vec{z}.\vec{t} = (\vec{x} + \vec{z}).(\vec{y} + \vec{t})$	Vrai/Faux
$(3)\vec{x}.\vec{y} = 0 \Rightarrow \vec{x} = 0 \text{ ou } \vec{y} = 0$	Vrai/Faux
$(4)\vec{x}.\vec{x} = 0 \Rightarrow \vec{x} = 0$	Vrai/Faux
$(5) (\forall \vec{z} \in \mathbb{R}^n, \vec{x}.\vec{z} = 0 \Rightarrow \vec{x} = 0)$	Vrai/Faux
$(6)\forall \vec{x}, \vec{y} \in \mathbb{R}^n, \vec{x} + \vec{y} = \vec{x} + \vec{y} $	Vrai/Faux
$(7)\forall \vec{x}, \vec{y} \in \mathbb{R}^n, \langle \vec{x}, \vec{y} \rangle = \frac{1}{4}(\vec{x} + \vec{y} ^2 - \vec{x} - \vec{y} ^2)$	Vrai/Faux
(8) Toute famille de vecteurs orthogonaux est libre.	Vrai/Faux
(9)Dans un parallèlogramme ABCD, la somme des carrés des longueurs des 4 côtés	
est égale à la somme des carrés des longueurs des 2 diagonales.	Vrai/Faux

Exercice 2 : Des inégalités entre réels.

- 1. Rappeler l'inégalité de Cauchy-Schwarz.
- 2. Soient $a_1, a_2..., a_n$ n réels strictement positifs et tels que $a_1 + a_2 + ... + a_n = 1$. A l'aide de vecteurs de \mathbb{R}^n bien choisis, montrer : $\sum_{k=1}^n \frac{1}{a_k} \ge n^2$.
- 3. Soit $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$: A l'aide de vecteurs bien choisis, montrer : $\left(\sum_{k=1}^n x_k\right)^2 \le n \sum_{k=1}^n x_k^2$.

Exercice 3 : Soit F un sous-espace vectoriel de \mathbb{R}^n .

- 1. Dans \mathbb{R}^4 : Soit $F = Vect(\vec{v_1}, \vec{v_2})$ avec $\vec{v_1} = (1, 1, 0, 1)$ et $\vec{v_2} = (0, 1, -1, 0)$. Déterminer une base de F^{\perp} .
- 2. Dans \mathbb{R}^4 . Soit $F = Vect(\vec{v_1}, \vec{v_2}, \vec{v_3})$ avec $\vec{v_1} = (1, 1, 0, 1), \vec{v_2} = (0, 1, -1, 0)$ et $\vec{v_3} = (0, 0, 1, 0)$. Déterminer une base de F^{\perp} .

Exercice 4 : Soit h l'endomorphisme de \mathbb{R}^3 de matrice $H = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 \end{pmatrix}$ dans la base canonique de \mathbb{R}^3

- 1. Montrer que 1 est valeur propre de h et déterminer le sous-espace propre $E_1(h)$ associé; on vérifiera qu'il est de dimension un. Trouver un vecteur $\overrightarrow{u_1}$ appartenant à $E_1(h)$ et de norme 1.
- 2. On admet que l'ensemble $F = \{(x, y, z) \in \mathbb{R}^3 \setminus x + z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Justifier que $F = \{\vec{x} \in \mathbb{R}^3, \text{ tels que } \vec{x} \text{ est orthogonal à tout vecteur de } E_1(h)\}.$
- 3. Après avoir calculé tHH , montrer que F est stable par h, c'est-à-dire que pour tout vecteur \vec{u} de F, $h(\vec{u})$ appartient à F
- 4. Trouver deux vecteurs $\overrightarrow{u_2}$ et $\overrightarrow{u_3}$ tels que $\mathscr{B}_F = (\overrightarrow{u_2}, \overrightarrow{u_3})$ soit une base orthonormée de F.
- 5. Montrer que $\mathscr{B}' = (\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ est une base orthonormée de \mathbb{R}^3
- 6. Déterminer la matrice de h dans \mathscr{B}'
- 7. Déterminer la matrice A' de la projection orthogonale p_F sur F dans la base \mathscr{B}'
- 8. Les deux endomorphismes de \mathbb{R}^3 h et p_F commutent-ils?
- 9. Exprimer la matrice A de p_F dans la base canonique de \mathbb{R}^3 en fonction de A' et d'une matrice P que l'on précisera et dont on explicitera les coefficients. Donner A

Exercice 5 : Soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \text{ tel que } x + y - z - t = 0 \text{ et } x + y + 2z + 2t = 0\}$. Soit $\vec{u} = (1, 2, 3, 4)$. Déterminer le projeté orthogonal de \vec{u} sur F puis calculer la distance du vecteur \vec{u} à F.

Exercice 6 : Soit f l'endomorphisme de \mathbb{R}^3 de matrice dans la base canonique $M = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 2 & 5 & 1 \\ -2 & 1 & 5 \end{pmatrix}$

- 1. Déterminer $\ker f$, en donner une base, puis démontrer : $\forall \vec{u} \in \mathbb{R}^3$, $f(\vec{u}) \vec{u} \in \ker f$.
- 2. Déterminer $\operatorname{Im} f$ et justifier que $\operatorname{Im} f$ est un plan P dont on donnera une équation cartésienne et un vecteur normal.
- 3. En déduire que f est la projection orthogonale sur le plan P.

Exercice 7: Eléments propres d'une projection orthogonale.

Soit F un sous-espace vectoriel de \mathbb{R}^n et p_F la projection orthogonale sur F.

- 1. Justifier que $Sp(p_F) \subset \{0,1\}$.
- 2. Que représente chacun des sous-espaces propres pour p_F ?
- 3. Que dire sur F pour distinguer les cas où $\operatorname{Sp}(p_F) = \{0,1\}$, $\operatorname{Sp}(p_F) = \{1\}$ et $\operatorname{Sp}(p_F) = \{0\}$?
- 4. Justifier que dans tous les cas p_F est diagonalisable. Donner une matrice diagonale représentant p_F dans une base de vecteurs propres.

Exercice 8 : soit (Ω, \mathcal{A}, P) un espace probabilisé. Soient $n_g eq2$, et $(X_1, ..., X_n)$ n variables aléatoires réelles définies sur Ω . On définit la matrice de covariance associée à ces n variables aléatoires de la façon suivante : M est une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que pour tout i, j de [1, n], $M_{i,j} = \text{cov}(X_i, X_j)$.

Justifier que la matrice M est diagonalisable dans une base orthonormale de vecteurs propres.

Exercice 9 : Dans chacun des cas, déterminer une matrice P carrée telle que tPAP soit diagonale.

$$\operatorname{Cas} 1: A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \qquad \operatorname{Cas} 2: A = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

Exercice 10: soit $n \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Soit f l'endomorphisme de \mathbb{R}^n canoniquement associé à A, et soit f^* l'endomorphisme canoniquement associé à A^T . On dit qu'un endomorphisme h de \mathbb{R}^n vérifie la propriété \mathcal{P} lorsque pour tout \vec{x} de \mathbb{R}^n , $\langle \vec{x}, h(\vec{x}) \rangle \geq 0$.

- 1. (a) Démontrer que pour tout \vec{x} de \mathbb{R}^n , $\langle \vec{x}, f(\vec{x}) \rangle = \langle \vec{x}, f^*(\vec{x}) \rangle$.
 - (b) en déduire que f vérifie \mathcal{P} si et seulement si $f + f^*$ vérifie \mathcal{P} .
 - (c) Justifier qu'il existe une matrice inversible $Q \in \mathcal{M}_n(\mathbb{R})$ telle que $Q^T = Q^{-1}$ et une matrice diagonale D de $\mathcal{M}_n(\mathbb{R})$ telles que : $A + A^T = QDQ^{-1}$.
 - (d) En déduire que f vérifie \mathcal{P} si et seulement si $\operatorname{Sp}(f + f^*) \subset \mathbb{R}^+$.
- $\text{2. Dans la suite de l'exercice } A = \begin{pmatrix} 2 & 1 & \dots & 1 \\ 1 & 2 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & \dots & 1 & 2 \\ \end{pmatrix}. \text{ Soit } B = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 \\ \end{pmatrix}.$

Soit g l'endomorphisme de \mathbb{R}^n canoniquement associé à B

- (a) Démontrer que f vérifie \mathcal{P} si et seulement si g vérifie \mathcal{P} .
- (b) Justifier que g n'est pas diagonalisable.
- (c) Calculer $rg(A-I_n)$ et en déduire que les valeurs propres de A sont 1 et n+1. Que peut-on en conclure pour f?
- 3. Soient $X_1,...,X_n$ n variables aléatoires indépendantes suivant la même loi de Poisson de paramètre 1.
 - (a) Démontrer que la matrice A vérifie pour tout i et j de [1, n], $A_{i,j} = E(X_i X_j)$.
 - (b) Démontrer par récurrence sur n $(n \in \mathbb{N}^*)$, que : $\forall \vec{x} = (x_1, ..., x_n), \langle \vec{x}, f(\vec{x}) \rangle E\left(\left(\sum_{i=1}^n x_i X_i\right)^2\right)$.
 - (c) retrouver que f vérifie \mathcal{P} .

Exercice 11 : On considère la fonction f qui à tout couple (x, y) de \mathbb{R}^2 , associe le réel $f(x, y) = (x + y - 1)^2 + (2x - 3)^2 + (y + 2x + 1)^2 + (y - 4)^2$.

- (1) Montrer qu'il existe un vecteur \vec{v} de \mathbb{R}^4 et 2 vecteurs $\vec{u_1}$ et $\vec{u_2}$, tels que pour tout couple (x,y) de \mathbb{R}^2 , $f(x,y) = ||x\vec{u_1} + y\vec{u_2} \vec{v}||^2$.
- (2) En introduisant une projection orthogonale, montrer que f admet un minimum sur \mathbb{R}^2 , pour un unique couple (x, y) que l'on déterminera.
- (3) Autre méthode : Après avoir justifié que f est de classe C^1 sur \mathbb{R}^2 , montrer que f admet un unique point critique, le déterminer.

On peut vérifier :
$$\forall x, y : f(x, y) = \left(3x + y - \frac{5}{3}\right)^2 + \left(\sqrt{2}y - \frac{7}{3\sqrt{2}}\right)^2 + \frac{43}{2}$$
. Conclusion.