Suites.

25 septembre 2025

Table des matières

1	1.1 Suites arithmétiques	2 2 3 3 3
2		4 4
3	Limite de suite réelle. 3.1 Suites convergentes. 3.2 Suites tendant vers l'infini. 3.3 Suites extraites. 3.4 Limite des suites arithmétiques et des suites géométriques.	5 5 5 6
4	Convergence et inégalités. 4.1 Lorsqu'on sait que les suites convergent	7 7
5	Opérations et limites. 5.1 Somme 5.2 Produit 5.3 Quotient v_n/u_n	8 8 8 8
6	Conséquences de la propriété de la borne supérieure. 6.1 Théorème de limite monotone	9 9
7	Echelle de comparaison.	10
8	Suites équivalentes.	11

Suites usuelles.

1.1 Suites arithmétiques.

Définition :

Soient $(u_n)_{n\in\mathbb{N}}$ une suite de nombres complexes et r un nombre complexe,

dire que (u_n) est arithmétique de raison r signifie que : $\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r$

Proposition : (Formule explicite)

Soient $(u_n)_{n\in\mathbb{N}}$ un suite de nombres complexes et r un nombre complexe,

 (u_n) est une suite arithmétique de raison r, si, et seulement si, $\forall n \in \mathbb{N}, u_n = u_0 + nr$

Somme de termes consécutifs d'une suite arithmétique:

Soient $(u_n)_{n\in\mathbb{N}}$ une suite, r un nombre complexe et p un entier.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison r, alors $\forall n\in[p;+\infty[$, $\sum_{k=p}^nu_k=(n-p+1)\frac{u_p+u_n}{2}$

 $\sum_{k=p}^{n} u_k = \underbrace{(n-p+1)}_{\text{nombre de termes}} \times \underbrace{\frac{u_p + u_n}{2}}_{\text{Moyenne arithmétique du 1er et du dernier terme}}$

1.2 Suites géométriques.

Définition:

Soient $(u_n)_{n\in\mathbb{N}}$ un suite de nombres complexes et q un nombre complexe,

dire que (u_n) est géométrique de raison q signifie que : $\forall n \in \mathbb{N}, \quad u_{n+1} = q u_n$

Proposition: (Formule explicite)

Soient $(u_n)_{n\in\mathbb{N}}$ un suite de nombres complexes et q un nombre complexe,

 $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q si, et seulement si, $\forall n\in\mathbb{N}, \quad u_n=u_0\,q^n$

Sommes.

Soient $(u_n)_{n\in\mathbb{N}}$ un suite de nombres complexes, q un nombre complexe tel que $q\neq 1$ et p un entier naturel,

Si $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q, alors $\forall n\in[p;+\infty[,\sum_{k=p}^nu_k=u_p\frac{1-q^{n-p+1}}{1-q}]$

$$\sum_{k=p}^{n} u_k = \underbrace{u_p}_{\text{premier terme}} \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

2

Remarque : lorsque q = 1 la suite est constante et alors $\sum_{k=n}^{n} u_k = (n - p + 1) u_p$

1.3 Suites arithmético-géométriques.

Définition:

Soit (u_n) une suite de nombres complexes,

dire que (u_n) est une suite **arithmético-géométrique** signifie que :

il existe deux complexes a et b avec $a \neq 1$ et $\forall n \in \mathbb{N}, u_{n+1} = a u_n + b$

Méthode pratique :

- ① On cherche le point fixe : $\ell = a\ell + b \iff ...$ $\ell = ...$
- ② On montre que $(u_n \ell)$ est géométrique de raison a (une ligne suffit).
- ③ On exprime $u_n \ell$ en fonction de n.
- **④ On conclut :** $\forall n \in \mathbb{N}, \quad u_n = (u_0 \ell) a^n + \ell$

1.4 Récurrence linéaire d'ordre 2.

Définition:

Soit (u_n) une suite de nombres réels,

dire que (u_n) suit une relation de **récurrence linéaire d'ordre 2 à coefficients constants** signifie qu'il existe deux réels a et b (fixés) tels que

$$\forall n \in \mathbb{N}, \quad u_{n+2} = a \, u_{n+1} + b \, u_n \qquad (*)$$

Remarque: Un telle suite est entièrement définie par la donnée de ses deux premiers termes.

Définition:

Si (u_n) vérifie $\forall n \in \mathbb{N}, \quad u_{n+2} = a u_{n+1} + b u_n$ alors

l'équation : $x^2 = ax + b$ est appelée **équation caractéristique** de cette relation de récurrence.

Théorème:

Soient a et b deux nombres **réels** avec $b \neq 0$ et (u_n) la suite vérifiant :

$$u_0 \in \mathbb{R}, \ u_1 \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_{n+2} = a u_{n+1} + b u_n$$

Cas 1 : Si $x^2 = ax + b$ possède deux solutions réelles distinctes q_1 et q_2 ,

alors il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha \, q_1^n + \beta \, q_2^n$$

Cas 2 : Si $x^2 = ax + b$ possède une unique solution réelle q_0 , alors il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \qquad u_n = \alpha q_0^n + \beta n q_0^n$$

Cas 3 : Si $x^2 = ax + b$ possède deux racines complexes conjugués $q = re^{i\theta}$ et $\bar{q} = re^{-i\theta}$,

alors il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha r^n \cos(n\theta) + \beta r^n \sin(n\theta)$$

En pratique:

- 1 « On reconnaît une suite récurrente linéaire d'ordre 2 à coefficients constants »
- 2 On donne l'équation caractéristique.
- 3 On résout l'équation caractéristique et on précise dans quel cas on se trouve.
- 4 On donne l'expression de u_n en fonction de n avec α et β à déterminer.
- \odot On détermine le système linéaire en α et β avec les premières valeurs et on le résout.
- © On conclut en donnant l'expression de u_n en fonction de n.

Suites réelles.

2.1 Suites majorées, minorées, bornées.

Définitions.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles,

0 Dire que (u_n) est majorée signifie que : $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$

2 Dire que (u_n) est minorée signifie que : $\exists m \in \mathbb{R} : \forall n \in \mathbb{N}, \ u_n \geqslant m$

3 Dire que (u_n) est bornée signifie que : $\exists (m, M) \in \mathbb{R}^2 : \forall n \in \mathbb{N}, \ m \leq u_n \leq M$ ou avec la valeur absolue.

4 Dire (u_n) est bornée signifie que : $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |u_n| \leq M$

2.2 Monotonie.

Définitions:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles,

• dire que (u_n) est croissante signifie que : $\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1} \quad (\text{ou} \quad u_{n+1} - u_n \geqslant 0)$

• dire que (u_n) est décroissante signifie que : $\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n \quad (\text{ou} \quad u_{n+1} - u_n \leqslant 0)$

• dire que (u_n) est strictement croissante signifie que : $\forall n \in \mathbb{N}, u_n < u_{n+1} \text{ (ou } u_{n+1} - u_n > 0)$

• dire que (u_n) est strictement décroissante signifie que : $\forall n \in \mathbb{N}, \quad u_{n+1} < u_n \quad (\text{ou} \quad u_{n+1} - u_n < 0)$

En pratique : (Plusieurs stratégies possibles)

Limite de suite réelle.

3.1 Suites convergentes.

Définition:

Soient (u_n) une suite réelle et ℓ un réel,

dire que (u_n) converge vers ℓ signifie que :

$$\forall \varepsilon > 0, \ \underbrace{\exists N \in \mathbb{N} : \quad \forall n \in \mathbb{N}, \quad n \geqslant N \Longrightarrow}_{APCR} |u_n - \ell| \leqslant \varepsilon$$

Plus simplement :

 $\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \quad \forall n \geqslant N \Longrightarrow |u_n - \ell| \leqslant \varepsilon$

ou

 $\forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \quad \forall n \geqslant N \Longrightarrow \ell - \varepsilon \leqslant u_n \leqslant \ell + \varepsilon$

Théorème : Toute suite convergente est bornée.

3.2 Suites tendant vers l'infini.

Définitions:

Dire que (u_n) diverge vers $+\infty$ signifie que : $\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N} : \ \forall n \geqslant N, \quad A \leqslant u_n$ Dire que (u_n) diverge vers $-\infty$ signifie que : $\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N} : \ \forall n \geqslant N, \quad u_n \leqslant A$

3.3 Suites extraites.

Propositions:

Soient $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles et α un nombre réel, $+\infty$ ou $-\infty$.

- ① la suite (u_n) tend vers α si, et seulement si, les suites $(u_{n+1}), (u_{n+2}), \dots$ tendent vers α .
- ② la suite (u_n) tend vers α si, et seulement si, les suites $(u_{n-1}), (u_{n-2}), \dots$ tendent vers α .
- ③ Si la suite (u_n) tend vers α alors la suite (u_{2n}) tend vers α .
- 9 Si la suite (u_n) tend vers α alors la suite (u_{2n+1}) tend vers α .

Théorème:

Soit (u_n) une suite à valeurs réelles,

- ① si les suites (u_{2n}) et (u_{2n+1}) convergent vers la même limite $\ell \in \mathbb{R}$ alors la suite (u_n) converge vers ℓ .
- 2 si les suites (u_{2n}) et (u_{2n+1}) divergent vers $+\infty$ (resp. $-\infty$) alors (u_n) diverge vers $+\infty$ (resp. $-\infty$)

3.4 Limite des suites arithmétiques et des suites géométriques.

Les suites arithmétiques.

On note, pour u_0 et r deux réels, la suite $(u_n) = (u_0 + nr)$,

- si r = 0 alors (u_n) converge
- si r > 0 alors (u_n) diverge vers $+\infty$.
- si r < 0 alors (u_n) diverge vers $-\infty$.

Les suites géométriques :

On note, pour u_0 et q deux réels, la suite $(u_n) = (u_0 q^n)$ (avec $u_0 \neq 0$)

- si -1 < q < 1 alors (u_n) converge vers 0
- si q = 1 alors (u_n) converge vers u_0 (la suite est constante)
- si q > 1 et $u_0 > 0$ alors (u_n) diverge vers $+\infty$
- si q > 1 et $u_0 < 0$ alors (u_n) diverge vers $-\infty$

Convergence et inégalités.

4.1 Lorsqu'on sait que les suites convergent.

Il faut toujours avoir justifié que ces limites existent avant d'utiliser ces deux théorèmes.

Théorème :

Soient (u_n) et (v_n) deux suites que l'on sait être convergentes, (u_n) vers le réel ℓ et (v_n) vers le réel ℓ' .

① Si $0 < \ell$ alors $\exists N \in \mathbb{N} : \forall n \geqslant N$, $0 < u_n$.
② Si $\ell > \ell'$ alors $\exists N \in \mathbb{N} : \forall n \geqslant N$, $u_n > v_n$ APCR

Théorème : lorsque tout converge, on peut passer à la limite sur des inégalités larges.

Soient (u_n) et (v_n) deux suites que l'on sait être convergentes, (u_n) vers le réel ℓ et (v_n) vers le réel ℓ' .

0 Si $\forall n \in \mathbb{N}$, $0 \leqslant u_n$ alors $0 \leqslant \ell$.

9 Si $\forall n \in \mathbb{N}, u_n \leqslant v_n \text{ alors}$

 $\ell \leq \ell'$

4.2 Théorèmes de comparaison.

Ici les théorèmes permettent de démontrer que des limites existent.

Théorème : $(+\infty \text{ et } -\infty)$

Soient (u_n) et (v_n) deux suites à valeurs réelles,

① Si (u_n) diverge vers $+\infty$ et $\forall n \in \mathbb{N}$, $u_n \leq v_n$ alors (v_n) diverge vers $+\infty$.

② Si (v_n) diverge vers $-\infty$ et $\forall n \in \mathbb{N}$, $u_n \leqslant v_n$ alors (u_n) diverge vers $-\infty$.

Théorème : (d'encadrement ou encore "des gendarmes")

Soient (u_n) , (v_n) et (w_n) trois suites à valeurs réelles,

Si $\forall n \in \mathbb{N}$, $u_n \leqslant v_n \leqslant w_n$ et si (u_n) et (w_n) convergent vers un réel ℓ

alors (v_n) est convergente et sa limite est ℓ .

Corollaires

Soient (u_n) et (v_n) deux suites à valeurs réelles et ℓ un réel.

① Si $\forall n \in \mathbb{N} \mid |u_n| \leq v_n$ et si (v_n) converge vers 0 alors (u_n) converge vers 0.

② Si (u_n) converge vers 0 et si (v_n) est bornée alors (u_nv_n) converge vers 0.

③ Si $\forall n \in \mathbb{N}$, $|u_n - \ell| \leq v_n$ et si (v_n) converge vers 0 alors (u_n) converge vers ℓ .

Remarque : dans tous les théorèmes de cette page on peut remplacer " $\forall n \in \mathbb{N}$ " par " $\exists N \in \mathbb{N} : \forall n \geqslant N$ "

5

Opérations et limites.

5.1 Somme.

$\lim_{n \to +\infty} (v_n)$ $\lim_{n \to +\infty} (u_n)$	l	+∞	$-\infty$
ℓ'			
+∞			
$-\infty$			

5.2 Produit.

$\lim_{n \to +\infty} (v_n)$ $\lim_{n \to +\infty} (u_n)$	$\ell < 0$	+∞	$-\infty$	0
$\ell' > 0$				
+∞				
$-\infty$				
0				

5.3 Quotient v_n/u_n .

$\lim_{n \to +\infty} (v_n)$ $\lim_{n \to +\infty} (u_n)$	$\ell < 0$	+∞	$-\infty$	0
$\ell' > 0$				
+∞				
$-\infty$				
0+				
0-				

Conséquences de la propriété de la borne supérieure.

Revoir la définition des bornes supérieure/inférieure et le théorème de la borne supérieure.

6.1 Théorème de limite monotone.

Version courte.

Théorème : (théorème de limite monotone)

Soit (u_n) une suite à valeurs réelles,

Si (u_n) est monotone alors (u_n) admet une limite.

Théorème : (théorème de limite monotone)

Soit (u_n) une suite à valeurs réelles,

- \bullet Si (u_n) est croissante et majorée alors la suite (u_n) converge.
- **2** Si (u_n) est croissante et si elle diverge alors la suite (u_n) diverge vers $+\infty$.
- \bullet Si (u_n) est décroissante et minorée alors la suite (u_n) converge.
- **4** Si (u_n) est décroissante et si elle diverge alors la suite (u_n) diverge vers $-\infty$.

Remarque : Dans ce théorème on peut remplacer "croissante" (resp. "décroissante") par "croissante APCR" (resp. "décroissante APCR")

6.2 Suites adjacentes.

Définition:

Soient (u_n) et (v_n) deux suites à valeurs réelles.

Dire que (u_n) et (v_n) sont adjacentes signifie que l'une est croissante, l'autre décroissante et que leur différence converge vers 0.

Théorème:

Si deux suites sont adjacentes alors elles sont convergentes et elles convergent vers la même limite.

Echelle de comparaison.

Théorème. (Limites à connaître)

Soient $\alpha \in \mathbb{R}_+^*$ et $a \in]-\infty; -1[\cup]1; +\infty[$,

$$\mathbf{0} \lim_{n \to +\infty} \frac{a^n}{n!} = 0$$

$$\begin{aligned} &]-\infty; \ -1 \ [\cup] 1; +\infty[\ , \\ & \bullet \lim_{n \to +\infty} \frac{a^n}{n!} = 0 \end{aligned} \qquad \bullet \lim_{n \to +\infty} \frac{n^\alpha}{a^n} = 0.$$

Remarques:

• on en déduit : $\lim_{n \to +\infty} \frac{n^{\alpha}}{n!} = 0$

• Ces limites sont appelées "croissances comparées des suites usuelles".

• La limite \bullet est toujours vraie pour $a \in [-1, 1]$, mais il ne s'agit plus d'une limite "croissance comparée".

• La limite $m{Q}$ entraı̂ne : $\forall \alpha \in \mathbb{R}, \ \forall x \in]-1,1[, \lim_{n \to +\infty} n^{\alpha} x^n = 0$ $Quand \ \alpha < 0 \ \textit{ce n'est pas une croissance comparée}.$

Corollaire.

Soient $\alpha \in \mathbb{R}_+^*$ et $x \in]-1;1[$,

$$\lim_{n\to +\infty} n^\alpha x^n = 0$$

Remarque:

Lorsque $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$, on note $u_n=o(v_n)$ et on dit que (u_n) est négligeable devant (v_n) .

Suites équivalentes.

Définition.

Soit (u_n) et (v_n) deux suites réelles telles que (v_n) ne s'annule pas : Dire que (u_n) et (v_n) sont dites équivalentes signifie que : la suite $\frac{(u_n)}{(v_n)}$ converge vers 1

On note:

$$u_n \underset{n \to +\infty}{\sim} v_n$$
 ou $u_n \sim v_n$

Attention : on n'écrit jamais : $u_n \sim 0$

Proposition: (Les propriétés qui passent de (v_n) à (u_n) lorsque (u_n) et (v_n) sont équivalentes).

Soient (u_n) et (v_n) deux suites équivalentes. $(u_n \underset{+\infty}{\sim} v_n)$

- si $\lim_{n \to +\infty} u_n = \beta$ alors $\lim_{n \to +\infty} v_n = \beta$
- si $u_n \neq 0$ à partir d'un certain rang alors $v_n \neq 0$ à partir d'un certain rang.
- si $u_n \ge 0$ à partir d'un certain rang alors $v_n \ge 0$ à partir d'un certain rang.
- si $u_n < 0$ à partir d'un certain rang alors $v_n < 0$ à partir d'un certain rang.

Proposition: (Relation d'équivalence)

Soit (u_n) et (v_n) deux suites à valeurs réelles.

- ① $(u_n) \sim (u_n)$ ② Si $(u_n) \sim (v_n)$ alors $(v_n) \sim (u_n)$
- 3 Si $(u_n) \sim (v_n)$ et $(v_n) \sim (w_n)$ alors $(u_n) \sim (w_n)$

Théorème : (Opérations et suites équivalentes)

① Si $(u_n) \sim (v_n)$ et $(u'_n) \sim (v'_n)$ alors $(u_n u'_n) \sim (v_n v'_n)$

Produit.

② Si $\left\{ \begin{array}{l} (u_n) \sim (v_n) \\ (u'_n) \sim (v'_n) \end{array} \right.$ alors $\left(\frac{u_n}{u'_n} \right) \sim \left(\frac{v_n}{v'_n} \right)$

3 Si $(u_n) \sim (v_n)$ alors $(u_n^{\alpha}) \sim (v_n^{\alpha})$

Elévation à une puissance constante. $(\alpha \in \mathbb{R})$

4 Si $(u_n) \sim (v_n)$ alors $(|u_n|) \sim (|v_n|)$

Passage à la valeur absolue.

Attention : on ne somme pas des équivalents.