Généralités

1.1 Majoration, minoration.

Définition:

```
Soient f une fonction à valeurs dans \mathbb{R} et E une partie de D_f (E \subset D_f),
Dire que f est majorée sur E signifie que : \exists M \in \mathbb{R} : \forall x \in E, \quad f(x) \leq M.
```

On définit de même : f est minorée ou bornée sur E.

1.2 Maximum d'une fonction à valeurs réelles.

Définition: (maximum global)

```
Soient f une fonction définie sur D et M un réel 
Dire que M est le maximum de f sur D signifie que : M \text{ est un majorant de } f \text{ et il existe } x_0 \in D \text{ tel que } M = f(x_0) 
On note : \max_{x \in D} (f(x)).
```

On définit de même le minimum d'une fonction sur un ensemble D.

Définition: (maximum local)

```
Soient f une fonction et M un réel Dire que M est un maximum local de f signifie que : Il existe x_0 \in D_f et \varepsilon > 0 tels que M = f(x_0) et M est le maximum de f sur D_f \cap [x_0 - \varepsilon, x_0 + \varepsilon]
```

On définit de même un minimum local d'une fonction.

1.3 Sens de variations.

Définition:

```
Soit f une fonction définie sur D,
Dire que f est croissante sur D signifie que : \forall (a,b) \in D^2, \ a < b \Longrightarrow f(a) \leqslant f(b)
Dire que f est strictement croissante sur D signifie que : \forall (a,b) \in D^2, \ a < b \Longrightarrow f(a) < f(b)
```

On définit de même décroissante et strictement décroissante.

Théorème : (Propriétés des fonctions strictement monotones)

Limite d'une fonction.

2.1 Limite réelle en x_0 ou en ∞ .

2.1.1 En $-\infty$ ou $+\infty$

Définition:

Soient ℓ un réel et f une fonction définie au voisinage de $+\infty$.

Dire que f tend vers ℓ en $+\infty$ signifie que :

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists A \in \mathbb{R} : \forall x \in D_f, \quad x \geqslant A \Longrightarrow |f(x) - \ell| \leqslant \varepsilon$$

On montre l'unicité d'un tel ℓ (lors qu'il existe) et on note :

$$\lim_{x\to +\infty} f(x) = \ell \qquad \text{ou} \qquad \lim_{+\infty} f = \ell \qquad \text{ou encore} \qquad f(x) \underset{x\to +\infty}{\longrightarrow} \ell$$

Définition:

Soient ℓ un réel et f une fonction définie au voisinage de $-\infty$.

Dire que f tend vers ℓ en $-\infty$ signifie que

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists A \in \mathbb{R} : \forall x \in D_f, \quad x \leqslant A \Longrightarrow |f(x) - \ell| \leqslant \varepsilon$$

On montre l'unicité d'un tel ℓ (lorsqu'il existe) et on note :

$$\lim_{x\to -\infty} f(x) = \ell \qquad \text{ou} \qquad \lim_{-\infty} f = \ell \qquad \text{ou encore} \qquad f(x) \underset{x\to -\infty}{\longrightarrow} \ell$$

2.1.2 En x_0

Soient ℓ et x_0 deux nombres réels, et f une fonction définie au voisinage de x_0 . Dire que f tend vers ℓ en x_0 signifie que :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists \eta \in \mathbb{R}_{+}^{*} : \forall x \in D_{f}, \quad |x - x_{0}| \leqslant \eta \Longrightarrow |f(x) - \ell| \leqslant \varepsilon$$

On montre l'unicité d'un tel ℓ (lors qu'il existe) et on note :

$$\lim_{x\to x_0} f(x) = \ell \qquad \text{ou} \qquad \lim_{x_0} f = \ell \qquad \text{ou encore} \qquad f(x) \underset{x\to x_0}{\longrightarrow} \ell$$

Définition:

Dire que f est **continue** en x_0 signifie que : f est définie en x_0 et que $\lim_{x \to x_0} f(x) = f(x_0)$.

Autrement dit : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists \eta \in \mathbb{R}_+^* : \forall x \in D_f$, $|x - x_0| \leqslant \eta \Longrightarrow |f(x) - f(x_0)| \leqslant \varepsilon$

2.2 Limite infinie

Définitions:

Soit f une définie au voisinage de x_0 ,

Ecrire: $\lim_{x \to \infty} f(x) = +\infty$ signifie que: $\forall A \in \mathbb{R}, \exists \eta \in \mathbb{R}_+^* : \forall x \in D_f, \quad |x - x_0| \leqslant \eta \Longrightarrow f(x) \geqslant A$

Ecrire: $\lim_{x \to \infty} f(x) = -\infty$ signifie que: $\forall A \in \mathbb{R}, \exists \eta \in \mathbb{R}_+^* : \forall x \in D_f, \quad |x - x_0| \leqslant \eta \Longrightarrow f(x) \leqslant A$

Soit f une définie au voisinage de $+\infty$,

Ecrire: $\lim_{x \to +\infty} f(x) = +\infty$ signifie que: $\forall A \in \mathbb{R}, \exists B \in \mathbb{R} : \forall x \in D_f, \quad x \geqslant B \Longrightarrow f(x) \geqslant A$

Ecrire: $\lim_{x \to +\infty} f(x) = -\infty$ signifie que: $\forall A \in \mathbb{R}, \exists B \in \mathbb{R} : \forall x \in D_f, \quad x \geqslant B \Longrightarrow f(x) \leqslant A$

Soit f une définie au voisinage de $-\infty$,

Ecrire: $\lim_{x \to a} f(x) = +\infty$ signifie que: $\forall A \in \mathbb{R}, \exists B \in \mathbb{R} : \forall x \in D_f, \quad x \leqslant B \Longrightarrow f(x) \geqslant A$

Ecrire: $\lim_{x \to -\infty} f(x) = -\infty$ signifie que: $\forall A \in \mathbb{R}, \exists B \in \mathbb{R} : \forall x \in D_f, \quad x \leqslant B \Longrightarrow f(x) \leqslant A$

2.3 Limites et inégalités.

2.3.1 Lorsqu'on sait que les fonctions ont des limites réelles.

Théorème :

Soient f et g deux fonctions définies au voisinage de α ,

0 Si $\lim_{\alpha} f = \ell$ et si $\ell > 0$ alors au voisinage de α , f(x) > 0.

2 Si f et g admettent une limite réelle en α et si $\lim_{\alpha} f < \lim_{\alpha} g$ alors au voisinage de α , f(x) < g(x).

Théorème:

a au voisinage de α , $f(x) \ge 0$

alors $\ell \geqslant 0$.

 $\oint \operatorname{et} \lim_{x \to \alpha} f(x) = \ell$

 $f(x) \leqslant g(x)$ au voisinage de α ,

 $\lim_{x \to \alpha} f(x) = \ell \text{ et } \lim_{x \to \alpha} g(x) = \ell'$ alors $\ell \leqslant \ell'$

2.3.2 Théorèmes de comparaison.

0

Si

Théorèmes:

① Si
$$\left| \begin{array}{l} \text{au voisinage de } \alpha \text{ , } f(x) \leqslant g(x) \\ \text{et } \lim\limits_{x \to \alpha} f(x) = +\infty \end{array} \right| \text{ alors } \lim\limits_{x \to \alpha} g(x) \text{ existe et vaut } +\infty.$$

② Si au voisinage de
$$\alpha$$
, $g(x) \leq f(x)$ alors $\lim_{x \to \alpha} g(x)$ existe et vaut $-\infty$.

③ Si | au voisinage de
$$\alpha$$
, $g(x) \leq f(x) \leq h(x)$, $\lim_{x \to \alpha} g(x) = \ell$ et $\lim_{x \to \alpha} h(x) = \ell$ alors $\lim_{x \to \alpha} f(x)$ existe et vaut ℓ .

Corollaires:

① Si
$$\left|\begin{array}{l} \text{au voisinage de } \alpha \ , \ |f(x)-\ell|\leqslant g(x) \\ \text{et } \lim_{x\to\alpha}g(x)=0 \end{array}\right|$$
 alors $\lim_{x\to\alpha}f(x)$ existe et vaut ℓ .

② Si
$$\lim_{x \to \alpha} g(x) = 0$$
 alors $\lim_{x \to \alpha} f(x)$ existe et vaut 0. et au voisinage de α , h est bornée.

2.4 Opérations et limites

 ℓ et ℓ' désignent deux réels, α désigne soit un réel x_0 , soit $+\infty$, soit $-\infty$.

2.4.1 Limite de la somme de deux fonctions : f + g

$\lim_{x \to \alpha} g(x)$ $\lim_{x \to \alpha} f(x)$) e	+∞	-∞
ℓ'			
+∞			
$-\infty$			

2.4.2 Limite du produit de deux fonctions : $(f \times g)$

$\lim_{x \to \alpha} f(x)$ $\lim_{x \to \alpha} g(x)$	$\ell < 0$	+∞	$-\infty$	0
$\ell' > 0$				
+∞				
$-\infty$				
0				

2.4.3 Limite du quotient de deux fonctions : $\left(\frac{f}{g}\right)$

$\lim_{x \to \alpha} f(x)$ $\lim_{x \to \alpha} g(x)$	$\ell < 0$	+∞	 0
$\ell' > 0$			
+∞			
$-\infty$			
0+			
0-			

2.4.4 Limites et composées.

Théorème: (Composée de deux fonctions.)

Soit f et g deux fonctions telles que f est définie au voisinage de α , g de β et $g \circ f$ de α ,

Si
$$\lim_{x \to \alpha} f(x) = \beta$$

$$\text{et} \quad \text{alors} \quad \lim_{x \to \alpha} g\big(f(x)\big) = \gamma$$

$$\lim_{y \to \beta} g(y) = \gamma$$

Théorème: (Composée d'une suite et d'une fonction.)

Soit f une fonction définie au voisinage de α et (u_n) une suite à valeurs dans D_f .

Si
$$\lim_{\substack{n \to +\infty \\ \text{et}}} u_n = \alpha$$
 alors la suite $(f(u_n))$ tend vers β quand n tend vers $+\infty$.

2.5 Echelle de comparaison. (Croissances comparées)

Proposition.

Pour $a \in]0; +\infty[$, (a un réel strictement positif)

$$\lim_{x \to +\infty} \frac{x^a}{e^x} = 0 \qquad \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^a} = 0$$

Remarques:

- **0** On peut ajouter $\lim_{x\to 0} (x^a \ln(x)) = 0$
- 2 On se réfère toujours à une de ces limites pour justifier une "croissance comparée".

2.6 Théorème de limite monotone.

Théorème:

Soit f une fonction, α et β désignent des réels, $+\infty$ ou $-\infty$ Si f est monotone sur l'intervalle $]\alpha;\beta[$ alors f admet une limite (réelle ou infinie) à droite en α et à gauche en β .

Démonstration. (Conséquence du théorème de la borne supérieure)

Corollaire:

Si f est croissante sur un intervalle sur un intervalle ouvert I alors f possède une limite réelle en tout point de I à gauche et à droite.

En situation:

- si f est croissante sur $a, +\infty$ et si f est minorée alors f admet une limite réelle en a.
- si f est croissante sur $]a, +\infty[$ alors f admet une limite à droite en a, une limite réelle ou $+\infty$.
- \bullet si f est décroissante sur a, b et si f est majorée alors f admet une limite réelle à droite en a.
- \bullet si f est décroissante sur]a,b[alors f admet à gauche en b une limite réelle ou $-\infty$.
- si f est décroissante sur \mathbb{R} et si f est minorée alors f admet une limite réelle en $+\infty$.
- si f est décroissante sur $\mathbb R$ alors f admet une limite en $-\infty$, une limite réelle ou $+\infty$

Remarques:

- Si f est croissante sur [a,b] alors f n'a pas nécessairement une limite en b, en revanche elle a une limite à gauche en b.

 Prendre par exemple la fonction partie entière sur [0,1].
- On utilise souvent ce théorème en construisant un tableau de variations.

Corollaire:

Soit f une fonction, α et β désignent des réels, $+\infty$ ou $-\infty$

Si f est croissante sur l'intervalle α ; β alors on a les équivalences suivante :

- lacktriangle f admet une limite réelle à gauche en β si, et seulement si, f est majorée.
- **2** f admet une limite réelle à droite en α si, et seulement si, f est minorée.

Continuité sur un intervalle.

Les fonctions f, g, ... sont à valeurs dans \mathbb{R} et sont chacunes définies sur une partie de \mathbb{R} : $D_f, D_g, ...$

3.1 Généralités.

Définition:

Soit $D \subset D_f$ tel que f est définie au voisinage de tout x_0 de D. Dire que f est continue sur D signifie que : f est continue en tout x_0 de D.

3.2 Opérations et continuité.

Théorème:

Si f et g sont continues sur D alors f+g, $f \times g$ sont continues sur D. si de plus g ne s'annule pas sur D alors $\frac{f}{g}$ est continue sur D.

Théorème:

Soient I, J deux intervalles, $f: D_f \to \mathbb{R}$ et $g: D_g \to \mathbb{R}$ deux fonctions, $\mathbf{Si} \left\{ \begin{array}{l} \textcircled{1} \ f \ \text{est continue sur } I \\ \textcircled{2} \ g \ \text{est continue sur } J \\ \textcircled{3} \ \forall x \in I, \quad f(x) \in J \end{array} \right. \quad \mathbf{alors} \quad g \circ f \ \text{est continue sur } I.$

3.3 Théorème des valeurs intermédiaires.

Théorème:

Version 1 : Si f est continue sur un intervalle I et a et b sont deux éléments de I, alors pour tout réel λ compris entre f(a) et f(b), l'équation $f(x) = \lambda$ admet au moins une solution dans [a, b].

Version 2 : Soit
$$I$$
 une partie de \mathbb{R} , a et b deux éléments de I et f une fonction défiie sur I .
Si
$$\begin{cases} \textcircled{1} & f \text{ est continue sur } I \\ \textcircled{2} & I \text{ est un intervalle} \\ \textcircled{3} & f(a) \leqslant 0 \text{ et } f(b \geqslant 0 \end{cases}$$
 alors il existe $(au \ moins)$ un réel $c \in I$ tel que $f(c) = 0$.

Version 3: Si I est un intervalle et f est une fonction continue sur I, alors f(I) est un intervalle.

L'image continue d'un intervalle est un intervalle.

3.4 Théorème de la bijection.

Théorème:

```
Soient I une partie de \mathbb{R} et f une fonction définie sur I,

Si \begin{cases} 0 \text{ } I \text{ est un intervalle} \\ 2 \text{ } f \text{ est continue sur } I \end{cases} alors \begin{cases} \mathbf{0} \text{ } f(I) \text{ est un intervalle} \\ \mathbf{2} \text{ } f \text{ réalise une bijection de } I \text{ dans } f(I) \end{cases}
```

Ce théorème est rarement utilisé tel quel, mais il en découle toutes les versions utilisées :

Théorème de la bijection (avec toutes les situations possibles):

```
Si f est continue et strictement croissante sur l'intervalle [a,b], alors f réalise une bijection de [a,b] dans [f(a),f(b)] Si f est continue et strictement décroissante sur l'intervalle [a,b], alors f réalise une bijection de [a,b] dans [f(b),f(a)] Si f est continue et strictement croissante sur l'intervalle ]\alpha,\beta[, alors f réalise une bijection de ]\alpha,\beta[ dans ]\lim_{\alpha}f,\lim_{\beta}f[ Si f est continue et strictement décroissante sur l'intervalle ]\alpha,\beta[, alors f réalise une bijection de ]\alpha,\beta[ dans ]\lim_{\beta}f,\lim_{\alpha}f[ ...
```

Propositions (Versions utilisées en pratique):

```
Si f est continue et strictement croissante sur l'intervalle [a,b], alors \forall k \in [f(a),f(b)], \exists ! \alpha \in [a,b]: f(\alpha)=k

Si f est continue et strictement décroissante sur l'intervalle [a,b], alors \forall k \in [f(b),f(a)], \exists ! \alpha \in [a,b]: f(\alpha)=k

Si f est continue et strictement croissante sur l'intervalle ]\alpha,\beta[, alors \forall k \in ]\lim_{\alpha} f,\lim_{\beta} f[,\exists ! \alpha \in [a,b]: f(\alpha)=k

...
```

Théorème:

Soit f une fonction continue et strictement monotone sur un intervalle I, on note : $g:\ I \longrightarrow f(I)$ et g^{-1} sa bijection réciproque. $x \longmapsto f(x)$

- g^{-1} est une bijection de f(I) dans I.
- g^{-1} est continue. (La réciproque d'une bijection continue est continue)
- g^{-1} est strictement monotone et de même monotonie que g.

Remarque : Il est simple de construire le tableau de variation de g^{-1} , connaissant celui de g.

3.5 Image continue d'un segment.

Théorème:

L'image directe d'un segment par une fonction continue est segment.

Remarques:

- Si f est continue sur le segment [a,b] alors il existe $(x_1,x_2) \in [a,b]^2$: tel que $f([a,b]) = [f(x_1),f(x_2)]$.
- Si f est continue sur le segment [a, b] alors elle est bornée sur [a, b] et atteint ses bornes (sup et inf).

Dérivation.

4.1 Définition

Définition:

Soit $f: D \to \mathbb{R}$, $x_0 \in D$, $(f \text{ est définie en } x_0)$

Dire que f est dérivable en x_0 signifie que $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite réelle quand x tend vers x_0 .

Cette limite s'appelle alors le nombre dérivé de f en x_0 .

4.2 Continuité et dérivabilité.

Si f est dérivable en x_0 alors f est continue en x_0 .

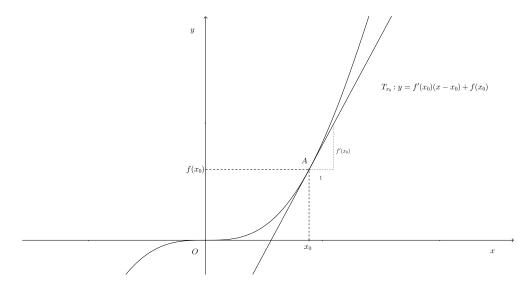
4.3 Tangente à une courbe.

Définition.

Lorsque f dérivable en x_0 .

La droite passant par $A(x_0, f(x_0))$ et de coefficient directeur $f'(x_0)$ est appelée **tangente** à la courbe d'équation y = f(x).

C'est la position limite de la corde passant par les points de coordonnées $(x_0, f(x_0))$ et $(x_0 + h, f(x_0 + h))$



Proposition.

L'équation de la tangente à C_f en $A(x_0, f(x_0))$ est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

4.4 Dérivée des fonctions usuelles.

Fonction	dérivée
$x \longmapsto x^n \ (n \in \mathbb{Z} \setminus \{0\})$	$x \longmapsto nx^{n-1}$
$x \longmapsto x^{\alpha} \ (\alpha \in \mathbb{R} \setminus \mathbb{Z})$	$x \longmapsto \alpha x^{\alpha-1}$
$x \longmapsto a^x$	$x \longmapsto \ln(a)a^x$
$x \longmapsto \sqrt{x}$	$x \longmapsto \frac{1}{2\sqrt{x}}$
$x \longmapsto e^x$	$x \longmapsto e^x$
$x \longmapsto \sqrt[n]{x}$	$x \longmapsto \frac{\sqrt[n]{x}}{nx}$

Fonction	dérivée
$x \longmapsto \ln(x)$	$x \longmapsto \frac{1}{x}$
$x \longmapsto \sin(x)$	$x \longmapsto \cos(x)$
$x \longmapsto \cos(x)$	$x \longmapsto -\sin(x)$
$x \longmapsto \tan(x)$	$x \longmapsto 1 + \tan^2(x)$
$x \longmapsto \tan(x)$	$x \longmapsto \frac{1}{\cos^2(x)}$
$x \longmapsto \arctan(x)$	$x \longmapsto \frac{1}{1+x^2}$

4.5 Opérations et dérivation.

Théorème:

Soient α , β deux réels et f, g deux fonctions définies sur un intervalle I,

Si f et g sont dérivables sur I alors :

- $\alpha f + \beta g$ est dérivable sur I et $\forall x \in I$, $(\alpha f + \beta g)'(x) = \alpha f'(x) + \beta g'(x)$.
- **2** f g est dérivable sur I et $\forall x \in I$, (f g)'(x) = f'(x) g(x) + f(x) g'(x).

Si, de plus, g ne s'annule pas sur I alors :

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$
 et $\left(\frac{1}{g}\right)'(x) = -\frac{f(x)g'(x)}{(g(x))^2}$

4.6 Composée et fonctions dérivables.

Théorème:

Soient
$$I$$
 et J deux intervalles, $f:D_f \to \mathbb{R}$ et $g:D_g \to \mathbb{R}$,

Si $\begin{cases} f \text{ est d\'erivable sur } I, \\ g \text{ est d\'erivable sur } J, \\ \text{et } \forall x \in I, \quad f(x) \in J \end{cases}$ alors $\begin{cases} g \circ f \text{ est d\'erivable sur } I \\ \text{et} \\ \forall x \in I, \quad (g \circ f)'(x) = f'(x) \times g'(f(x)) \end{cases}$

4.7 Dérivée de la réciproque.

Théorème :

Soient f une bijection continue et strictement monotone de I dans f(I), $x_0 \in I$ et $y_0 = f(x_0)$.

1er cas : Si f est dérivable en x_0 et $f'(x_0) \neq 0$ alors f^{-1} est dérivable en y_0 et $\left(f^{-1}\right)'(y_0) = \frac{1}{f'(x_0)}$

2ème cas : Si f est dérivable en x_0 et $f'(x_0) = 0$ alors

 f^{-1} n'est pas dérivable en y_0 et $C_{f^{-1}}$ admet une tangente verticale au point d'abscisse y_0 .

Corollaire:

Soit f une bijection continue et strictement monotone de I sur f(I),

Si f est dérivable sur I et si f' ne s'annule pas sur I alors f^{-1} est dérivable sur f(I) et :

$$\forall x \in f(I), \quad \left(f^{-1}\right)'(x) = \frac{1}{f'\left(f^{-1}(x)\right)}$$

4.8 Dérivée d'ordre supérieur.

4.8.1 Définition de la dérivée n ième .

Définition : (fonctions n fois dérivables)

Soit f une fonction définie sur un intervalle I. (on note $f = f^{(0)}$)

Dire que : f est (au moins) n fois dérivable sur I,

signifie que : successivement pour tout k compris entre 1 et n,

 $f^{(k-1)}$ est dérivable sur I et on note $f^{(k)}$ sa dérivée.

4.8.2 Fonctions de classe C^n .

Définitions:

Soit f une fonction définie sur un intervalle I.

Dire qu'une fonction f est de classe \mathcal{C}^n sur I signifie qu'elle est n fois dérivable et que $f^{(n)}$ est continue sur I. Dire que f est indéfiniment dérivable sur I signifie que pour tout entier naturel n, la fonction f est n fois dérivable sur I (on dit alors que f est de classe \mathcal{C}^{∞} sur I).

4.8.3 Dérivées successives et opérations.

Théorèmes:

Soient f et g deux fonctions de I dans \mathbb{R} et α , β deux réels.

① Si $f \in \mathcal{C}^n(I)$ et $g \in \mathcal{C}^n(I)$ alors $\alpha f + \beta g$ et f g sont de classe \mathcal{C}^n sur I.

② Si $f \in \mathcal{C}^n(I)$ et $g \in \mathcal{C}^n(I)$ et si g ne s'annule pas sur I alors $\frac{1}{g}$ et $\frac{f}{g}$ sont de classe \mathcal{C}^n sur I.

③ Si $f \in \mathcal{C}^n(I)$, $g \in \mathcal{C}^n(J)$ et si f(I) = J alors $g \circ f \in \mathcal{C}^n(I)$

On peut énoncer les mêmes théorèmes en remplaçant tous les \mathcal{C}^n par des \mathcal{C}^{∞} .

Théorème:

Soient f et g deux fonctions de I dans $\mathbb R$ et α, β deux réels.

Si f et g sont n fois dérivables sur I alors $\alpha f + \beta g$ est n fois dérivable sur I et $(\alpha f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$

4.9 Extremum local d'une fonction dérivable.

Théorème: (condition d'existence d'un extremum local sur un ouvert)

Soient I un intervalle de $\mathbb R$, a un élément de I qui n'est pas une borne de I et f une fonction de I dans $\mathbb R$.

Si
$$\begin{cases} f \text{ est d\'erivable en } a \\ f \text{ admet un extremum local en } a \end{cases}$$
 alors $f'(a) = 0$

4.10 Théorème de Rolle.

Théorème:

Soient a et b deux réels vérifiant a < b et f une fonction de [a,b] dans \mathbb{R} .

Si $\begin{cases} f \text{ est continue sur } [a,b] \\ f \text{ est dérivable sur }]a,b[& \text{alors} & \exists c \in]a,b[: & f'(c) = 0 \\ f(a) = f(b) \end{cases}$

4.11 Théorème des accroissements finis.

Théorème:

Soit a et b deux réels tels que a < b,

Si $\begin{cases} f \text{ est continue sur } [a, b] \\ f \text{ est dérivable sur }]a, b[\end{cases}$ alors il existe $c \in]a, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

Théorème: (Plusieurs versions du même théorème)

Soit f une fonction dérivable sur un intervalle I,

- ① Si a et b sont deux éléments de I, alors il existe $c \in I$ tel que f(b) f(a) = f'(c)(b a).
- ② Si a et b sont deux éléments de I, alors il existe $c \in I$ tel que $|f(b) f(a)| = |f'(c)| \times |b a|$.

4.12 Dérivée et sens de variations.

Théorème:

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ dérivable sur I,

① $\forall x \in I, \quad f'(x) \geq 0$ si, et seulement si, f est croissante sur I.

② $\forall x \in I, \quad f'(x) \leq 0$ si, et seulement si, f est décroissante sur I.

③ $\forall x \in I, \quad f'(x) = 0$ si, et seulement si, f est constante sur I.

Attention : Ces théorèmes sont faux lorsque I n'est pas un intervalle.

Théorème:

• Si $\begin{cases} f \text{ est continue sur l'intervalle } [a,b] \\ f \text{ est dérivable sur }]a,b[\\ \forall x \in]a,b[, f'(x)>0 \end{cases}$ alors f est strictement croissante sur [a,b].

• Si $\begin{cases} f \text{ est dérivable sur l'intervalle } I \\ \forall x \in I, f'(x)>0 \end{cases}$ alors f est strictement croissante sur I.

On peut énoncer des théorèmes du même type pour les fonctions strictement décroissantes.