Définitions. vocabulaire. notation.

Définition

Soit m un entier naturel non nul et $(u_n)_{n\geqslant m}$ une suite de réels.

Etudier la série de terme général u_n signifie étudier la suite $\left(\sum_{k=m}^n u_k\right)_{n\geq m}$ (on note $((S_n)_{n\geq m}$ cette suite)

La série de terme général u_n est notée : $\sum_{n \ge m} u_n$

- Les $S_n = \sum_{k=m}^n u_k$ sont les sommes partielles de la série $\sum_{n \geqslant m} u_n$.
- Dire que la série $\sum_{n \ge m} u_n$ est **convergente** signifie que (S_n) est convergente.
- Si (S_n) est converge vers le réel ℓ alors ℓ est appelé somme de la série $\sum_{n>m} u_n$.

et dans ce cas on note : $\sum_{k=m}^{+\infty} u_k = \lim_{n \to +\infty} S_n \quad (=\ell)$

 \bullet Dire que la série $\sum_{n\geqslant m}u_n$ est divergente signifie que (S_n) est divergente.

Exemples: Voir la feuille_cours_1.

En pratique : Pour étudier la nature d'une série :

- on étudie la convergence de la suite (S_n) définie par : $S_n = \sum_{k=-\infty}^n u_k$.

$$S_n = \sum_{k=m}^n u_k$$

$$= \dots$$

$$= \dots$$

$$\xrightarrow[n \to +\infty]{} \ell$$

- on conclut en utilisant le vocabulaire des séries :

Lorsque (S_n) converge vers ℓ , on dit que la série $\sum_{n\geqslant m}u_n$ converge et que sa somme $\sum_{k=m}^{+\infty}u_k$ est égale à ℓ .

Lorsque (S_n) diverge vers ℓ , on dit que la série $\sum_{n\geqslant m}u_n$ diverge.

Remarques:

La suite (S_n) est la suite des sommes partielles de la série $\sum_{n\geq m} u_n$

Lorsque (S_n) converge vers ℓ , on dit que la somme " $\sum_{k=m}^{+\infty} u_k$ existe" et vaut ℓ .

Des premiers résultats

2.1 Indice de départ.

Proposition

Soit $(u_n)_{n\geqslant m}$ une suite de réels et n_1 et n_2 deux entiers naturels supérieurs à m, La série $\sum_{n\geqslant n_1}u_n$ est convergente si, et seulement si, la série $\sum_{n\geqslant n_2}u_n$ est convergente.

Démonstration : On suppose que $n_1 < n_2$

$$\forall n \geqslant n_2, \qquad \sum_{k=n_1}^n u_k = \sum_{\substack{k=n_1 \\ \text{ne dépend pas de } n}}^{n_2-1} u_k + \sum_{k=n_2}^n u_k$$

donc les deux suites $\left(\sum_{k=n_1}^n u_k\right)$ et $\left(\sum_{k=n_2}^n u_k\right)$ convergent simultanément.

Remarque: en cas de convergence, toujours avec $n_1 < n_2$, on a

$$\sum_{k=n_1}^{+\infty} u_k = \sum_{k=n_1}^{n_2-1} u_k + \sum_{k=n_2}^{+\infty} u_k$$

Remarques:

- \bullet On dit aussi que les séries $\sum_{n\geqslant n_1}u_n$ et $\sum_{n\geqslant n_2}u_n$ ont même nature.
- La nature d'une série ne dépend pas des premiers termes.
- Quand on demande la nature de la série, il est inutile de donner le premier indice.
- \bullet On peut ne rien mettre sous la somme. " Déterminer la nature de $\sum u_n$ ".

2.2 Une condition nécessaire de convergence.

Théorème.

Soit $(u_n)_{n\geqslant m}$ une suite de réels,

Si la série $\sum_{n\geqslant m}u_n$ est convergente alors la suite (u_n) tend vers 0.

Démonstration : Voir Feuille_cours_1. Cela vient de la relation $u_n = S_n - S_{n-1}$.

En pratique on utilise souvent la forme contrapos'ee de cette implication :

Si la suite (u_n) ne tend pas vers 0 alors la série $\sum_{n\geqslant m}u_n$ est **divergente**

Attention la réciproque est fausse. Contre-exemple : $\sum_{n\geq 1} \frac{1}{n}$ est divergente et pourtant $\lim_{n\to +\infty} \frac{1}{n} = 0$

Trop nombreux sont ceux qui font l'erreur de raisonnement de dire que la série converge lorsque $u_n \xrightarrow[n \to +\infty]{} 0$.

2.3 Séries télescopiques.

Proposition. (Complément)

Soit (a_n) une suite réelle quelconque, on note (u_n) la suite définie par $u_n = a_{n+1} - a_n$,

La série de terme général u_n converge si, et seulement si, la suite (a_n) est convergente.

et en cas de convergence : $\sum_{k=m}^{+\infty}u_k=\underset{n\rightarrow+\infty}{\lim}a_n\ -\ a_m$

En pratique on le redémontre, car il y a plusieurs situations possibles : $u_n = a_{n-1} - a_n$, $u_n = a_n - a_{n+1}$...

En effet:

2.4 Combinaisons linéaires de séries convergentes

Théorème

Soient $(u_n)_{n\geqslant m}$ et $(v_n)_{n\geqslant m}$ deux suites de réels, α et β deux réels.

Si les séries $\sum_{n\geqslant m}u_n$ et $\sum_{n\geqslant m}v_n$ sont convergentes alors la série $\sum_{n\geqslant m}(\alpha u_n+\beta v_n)$ est convergente.

et alors : $\sum_{k=m}^{+\infty} (\alpha u_k + \beta v_k) = \alpha \sum_{k=m}^{+\infty} u_k + \beta \sum_{k=m}^{+\infty} v_k$

En effet:

On suppose que les séries $\sum u_n$ et $\sum v_n$ convergent,

Pour $n \geqslant m$

$$\sum_{k=m}^{n} (\alpha u_k + \beta v_k) = \alpha \sum_{k=m}^{n} u_k + \beta \sum_{k=m}^{n} v_k$$
 (Propriétés des sommes)

or les deux séries convergent donc $\left(\sum_{k=m}^{n} (\alpha u_k + \beta v_k)\right)_{n \geq m}$ converge.

On a aussi l'égalité : $\sum_{n=m}^{+\infty} (\alpha u_n + \beta v_n) = \alpha \sum_{n=m}^{+\infty} u_n + \beta \sum_{n=m}^{+\infty} v_n$

Corollaire

Pour $\alpha \neq 0$, $\sum_{n \geqslant m} u_n \text{ converge si, et seulement si, } \sum_{n \geqslant m} \alpha u_n \text{ converge.}$

3

En effet:

2.5 Séries $\sum u_n$ où (u_n) est à support fini.

Proposition.

Soit $(u_n)_{n\geqslant 0}$ une suite de réels,

S'il existe un rang N à partir duquel $u_n = 0$ alors la série $\sum u_n$ est convergente.

et alors :
$$\sum_{k=0}^{+\infty} u_k = \sum_{k=0}^{N-1} u_k$$

En effet:

Phrase de rédaction : "La somme $\sum_{k=0}^{+\infty}u_k$ existe car (u_n) est à support fini."

Exemples: $\sum_{k=0}^{+\infty} {10 \choose k}$ existe et vaut

Lien avec les fonctions polynômiales réelles :

Dire qu'une fonction P est polynomiale signifie qu'il existe une suite (a_n) nulle à partir d'un certain rang telle que :

$$P: x \longmapsto \sum_{k=0}^{+\infty} a_k x^k$$

2.6 Séries à termes positifs.

Deux résultats à redémontrer dans une copie.

Proposition. (Complément)

Soit $(u_n)_{n\geqslant m}$ une suite de réels,

Si (u_n) est à **termes positifs ou nuls** alors la suite $\left(\sum_{k=m}^n u_k\right)_{n\geqslant m}$ est croissante.

En effet:

Proposition. (Complément)

Soit $(u_n)_{n\geqslant m}$ une suite de réels,

Si (u_n) est à **termes positifs ou nuls** alors on a l'équivalence suivante :

La série $\sum_{n\geqslant m}u_n$ est convergente si, et seulement si, la suite $\left(\sum_{k=0}^nu_k\right)_{n\geqslant m}$ est majorée.

4

et en cas de convergence on a : $\forall n \geqslant m, \quad \sum_{k=m}^{n} u_k \leqslant \sum_{k=m}^{+\infty} u_k$

En effet:

Séries usuelles.

Séries géométriques et les dérivées.

Soit q un nombre réel,

 \bullet Série géométrique de raison q.

La série $\sum_{n\geqslant 0}q^n$ est convergente si, et seulement si, -1 < q < 1; et alors $\sum_{k=0}^{+\infty}q^k = \frac{1}{1-q}$.

 ${\bf 2}$ Série géométrique dérivée de raison q.

La série $\sum_{n \ge 1} nq^{n-1}$ est convergente si, et seulement si, -1 < q < 1; et alors $\sum_{k=1}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2}$.

 $\mbox{\bf 3}$ Série géométrique dérivée d'ordre 2 de raison q.

La série $\sum_{n\geqslant 2} n(n-1)q^{n-2}$ est convergente si, et seulement si, -1< q<1

et alors $\sum_{k=2}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}.$

Exemples.

$$\sum_{k=0}^{+\infty} 2^{-k} = \dots \qquad \sum_{n=1}^{+\infty} \frac{n(-1)^{n-1}}{3^{n-1}} = \dots \qquad \sum_{k=2}^{+\infty} \frac{k(k-1)2^{k-2}}{5^{k-2}} = \dots$$

Remarques:

- pour retrouver l'expression des séries dérivées on dérive deux fois la fonction $x \mapsto \frac{1}{1-x}$
- Pour $q \in]-1,1[$, on peut changer l'indice de départ pour les séries dérivées :

$$\sum_{k=0}^{+\infty} kq^{k-1} = \frac{1}{(1-q)^2} \quad \text{et} \quad \sum_{k=0}^{+\infty} k(k-1)q^{k-2} = \frac{2}{(1-q)^3}.$$

Démonstrations.

Première remarque:

Si $q \notin]-1,1[$ alors les termes généraux (q^n) , (nq^{n-1}) et $(n(n-1)q^{n-2})$ ne convergent pas vers 0 donc les séries divergent dans les cas \bullet , \bullet et \bullet .

Il suffit donc d'étudier la convergence dans les trois cas avec $q \in]-1;1[$:

0

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}$$

$$\xrightarrow[n \to +\infty]{} \frac{1}{1 - q}$$

0

En effet $\lim_{n\to +\infty} nq^n = 0$ (limite du cours appelé "croissance comparées")

$$\sum_{k=1}^{n} kq^{k-1} \underset{n \to +\infty}{\longrightarrow} \frac{1}{(1-q)^2}$$

0

$$\begin{array}{lll} (1-q)\sum_{k=2}^n k(k-1)q^{k-2} & = & \sum_{k=2}^n k(k-1)q^{k-2} - \sum_{k=2}^n k(k-1)q^{k-1} \\ & = & \sum_{k=1}^{n-1} (k+1)kq^{k-1} - \sum_{k=1}^n k(k-1)q^{k-1} \\ & = & \sum_{k=1}^n (k^2+k-k^2+k)q^{k-1} - (n+1)nq^{n-1} \\ & = & 2\sum_{k=1}^n kq^{k-1} - (n+1)nq^{n-1} \\ & \xrightarrow[n \to +\infty]{} & \frac{2}{(1-q)^2} - 0 & (On\ utilise\ \ensuremath{\mathfrak{Q}}\) \end{array}$$

En effet : $(n+1)nq^{n-1} \sim \frac{n^2q^n}{q}$ et $\lim_{n \to +\infty} n^2q^n = 0$ (limite du cours appelé "croissance comparées")

$$\sum_{k=1}^{n} kq^{k-1} \underset{n \to +\infty}{\longrightarrow} \frac{1}{(1-q)^2}$$

Quelques sommes autour de celles-ci (Savoir les retrouver rapidement, ne pas les apprendre)

$$\sum_{k=1}^{+\infty} q^k = \dots \qquad \sum_{n=1}^{+\infty} q^{n-1} = \dots \qquad \sum_{k=m}^{+\infty} q^k = \dots \qquad \sum_{n=m}^{+\infty} q^{n-m} = \dots$$

$$\sum_{k=1}^{+\infty} kq^k = \dots \qquad \sum_{n=0}^{+\infty} (n+1)q^n = \dots \qquad \sum_{k=0}^{+\infty} k(k-1)q^k = \dots \qquad \dots$$

Démonstration. (Voir la feuille_calcul_1) Ex 5 et 6

Série exponentielle.

Quel que soit le nombre réel x,

La série
$$\sum_{n\geqslant 0} \frac{x^n}{n!}$$
 est convergente et $\sum_{k=0}^{+\infty} \frac{x^k}{k!} = e^x$

Démonstration. Voir la feuille_cours_1 Ex 9

Exemples.

$$\sum_{n=0}^{+\infty} \frac{1}{n!} = \dots \qquad \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = \dots \qquad \sum_{n=0}^{+\infty} \frac{(\ln(2))^n}{n!} = \dots$$

Quelques sommes autour de celle-ci (Savoir les retrouver rapidement, ne pas les apprendre)

$$\sum_{n=1}^{+\infty} \frac{x^n}{n!} = \dots \qquad \sum_{n=1}^{+\infty} \frac{x^n}{(n-1)!} = \dots \qquad \sum_{n=m}^{+\infty} \frac{x^n}{(n-m)!} = \dots \dots \qquad \dots$$

Démonstration. (Feuille_calcul_1) Ex 7 et 8

Séries de Riemann.

- **1** La série $\sum_{n\geq 1} \frac{1}{n}$ est divergente.
- **2** La série $\sum_{n\geqslant 1}\frac{1}{n^2}$ est convergente. (Complément : sa somme vaut $\frac{\pi^2}{6}$)
- **3** Complément :

Pour $\alpha \in \mathbb{R}$,

la série $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ est convergente si, et seulement si, $\alpha>1$

Démonstration. (Rappel rapide, sinon revoir la feuille_cours_1)

Pour \bullet on utilise pour $k \geqslant 1$: $\ln(k+1) - \ln(k) \leqslant \frac{1}{k}$ et pour \bullet on utilise pour $k \geqslant 2$: $\frac{1}{k^2} \leqslant \frac{1}{k-1} - \frac{1}{k}$

Pour $oldsymbol{0}$ dans le cas $\alpha>1$, on utilise pour $k\geqslant 2$: $\frac{1}{k^{\alpha}}\leqslant \frac{1}{\alpha-1}\left((k-1)^{1-\alpha}-k^{1-\alpha}\right)$

La démonstration de 3 faite en classe (on utilise un théorème de convergence pour la première étape) :

• On suppose $\alpha \leq 1$,

 $1-\alpha\geqslant 0$ donc pour tout $n\in\mathbb{N}^*$, $\exp((1-\alpha)\ln(n))\geqslant 1$ ou encore $n^{1-\alpha}\geqslant 1$,

On peut alors affirmer que : $\begin{cases} \forall n \in \mathbb{N}^*, & 0 \leqslant \frac{1}{n} \leqslant \frac{1}{n^{\alpha}} \\ \sum \frac{1}{n} & \text{diverge} \end{cases}$ ce qui entraı̂ne (théorème de convergence) que :

$$\boxed{\text{la série} \sum_{n\geqslant 1} \frac{1}{n^{\alpha}} \text{ est divergente}}$$

7

• On suppose $\alpha > 1$,

Soit k un entier ≥ 2 ,

la fonction $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante sur [k-1,k] donc $\forall x \in [k-1,k], \quad \frac{1}{k^{\alpha}} \leqslant \frac{1}{x^{\alpha}}$

et en intégrant sur [k-1,k] (les fonctions sont continues) il vient :

$$\frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

En sommant pour k allant de 2 à n on obtient avec la relation de Chasles :

$$S_n = \sum_{k=2}^n \frac{1}{k^{\alpha}} \le \int_1^n \frac{1}{x^{\alpha}} dx = \left[\frac{x^{1-\alpha}}{1-\alpha} \right]_1^n = \frac{1}{\alpha - 1} - \frac{x^{1-\alpha}}{\alpha - 1} \le \frac{1}{\alpha - 1}$$

Donc la suite (S_n) est majorée.

de plus
$$S_{n+1} - S_n = \frac{1}{(n+1)^{\alpha}} \geqslant 0$$
 donc (S_n) est croissante.

La suite (S_n) est majorée et croissante donc elle converge et ainsi :

la série
$$\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$$
 est convergente

Remarques:

• La série $\sum_{n\geqslant 1}\frac{1}{n}$ est appelée série harmonique.

$$\bullet \sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\longrightarrow} +\infty$$

Non seulement on sait que la série diverge mais aussi que la suite des sommes partielles tend vers $+\infty$.

• Complément :
$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

• Ne pas confondre les sommes de Riemann, les séries de Riemann et les intégrales de Riemann.

Théorèmes.

m désigne ici un entier naturel quelconque.

4.1 Théorème de convergence par comparaison des termes généraux positifs.

Théorème

Soient $(u_n)_{n \geqslant m}$ et $(v_n)_{n \geqslant m}$ deux suites de réels,

0 Si $\forall n \geqslant m$, $0 \leqslant u_n \leqslant v_n$ et $\sum v_n$ est convergente alors la série $\sum u_n$ est convergente

2 Si $\forall n \geqslant m$, $0 \leqslant u_n \leqslant v_n$ et $\sum u_n$ est divergente alors la série $\sum v_n$ est divergente

Attention (erreur courante): Trop nombreux sont ceux qui passent à la somme sur l'encadrement $0 \le u_n \le v_n$.

Démonstration : (Faite au tableau)

Il suffit de faire une des deux démonstrations :

En effet, lorsque : $\forall n \geqslant N$, $0 \leqslant u_n \leqslant v_n$, les deux implications suivantes sont la contraposée l'une de l'autre :

$$\bullet$$
 Si $\sum v_n$ CV alors $\sum u_n$ CV

1 Si
$$\sum v_n$$
 CV alors $\sum u_n$ CV et **2** Si $\sum u_n$ DV alors $\sum v_n$ DV.

Montrons le $m{0}$ de ce théorème : On suppose que $\forall n\geqslant m,\quad 0\leqslant u_n\leqslant v_n$ et que $\sum_{n\geqslant m}v_n$ converge.

On note $S_n = \sum_{k=1}^n u_k$ et $S'_n = \sum_{k=1}^n v_k$,

- Pour tout $n \in \mathbb{N}$: $S_n S_{n-1} = u_n \ge 0$ et $S'_n S'_{n-1} = v_n \ge 0$ donc les suites (S_n) et (S'_n) sont croissantes.
- $\sum_{n \geq m} v_n$ converge, donc (S'_n) converge et elle est donc majorée. On note M un réel vérifiant $\forall n \geq m, S'_n \leq M$.
- $\forall k \geq m$, $u_k \leq v_k$ donc (en sommant pour k allant de m à un entier n) pour tout $n, S_n \leq S'_n$

et ainsi
$$\forall n \geq m, S_n \leq M$$

 \bullet On a montré que la suite (S_n) est croissante et majorée $(par\ M)$, donc elle converge.

(Théorème de convergence monotone)

En conclusion : (S_n) est convergente, autrement dit la série $\sum u_n$ converge.

Corollaire

Soient $(u_n)_{n \geqslant m}$ et $(v_n)_{n \geqslant m}$ deux suites de réels,

Si $\forall n \geqslant m \quad 0 \leqslant u_n \leqslant v_n$ et $\sum v_n$ est convergente

alors la série $\sum u_n$ est convergente et $\sum_{k=m}^{+\infty} u_k \leqslant \sum_{k=m}^{+\infty} v_k$

En effet:

4.2 Théorème de convergence par équivalence des termes généraux positifs.

Théorème

Soient $(u_n)_{n\geqslant m}$ et $(v_n)_{n\geqslant m}$ deux suites de réels,

0 Si $u_n \sim v_n$ et si $\forall n \geqslant m, \ v_n \geqslant 0$ et si $\sum v_n$ est convergente,

alors la série $\sum u_n$ est convergente

2 Si $u_n \sim v_n$ et si $\forall n \geqslant m, \ v_n \geqslant 0$ et si $\sum v_n$ est divergente,

alors la série $\sum u_n$ est divergente

Attention: Trop nombreux sont ceux qui oublient $v_n \ge 0$.

Démonstration : (légèrement différente de ce qui a été faite au tableau)

• $u_n \sim v_n$ donc il existe (t_n) telle que $\forall n \geqslant m, \ v_n = u_n t_n$ et $\lim_{n \to +\infty} t_n = 1$

• $\lim_{n \to +\infty} t_n = 1$ donc il existe $N \geqslant m$ tel que $\forall n \geqslant N$, $\frac{1}{2} \leqslant t_n \leqslant \frac{3}{2}$ et en multipliant par $u_n \geqslant 0$ on obtient :

$$\forall n \geqslant N, \quad \frac{u_n}{2} \leqslant v_n \leqslant \frac{3u_n}{2}$$

D'une part : Si $\sum u_n$ converge

on a alors $\forall n \geqslant N$, $0 \leqslant v_n \leqslant \frac{3u_n}{2}$ et la série $\sum \frac{3u_n}{2}$ converge

donc (d'après le théorème $4.1:\sum v_n$ converge

D'autre part : Si $\sum u_n$ diverge

on a alors $\forall n \geqslant N$, $0 \leqslant \frac{u_n}{2} \leqslant v_n$ et la série $\sum \frac{u_n}{2}$ diverge

donc (d'après le théorème $4.1:\sum v_n$ diverge

En conclusion : $\sum_{n \geqslant m} u_n$ converge si, et seulement si, $\sum_{n \geqslant m} v_n$ converge.

Une autre version de ce théorème

Théorème

Soient $(u_n)_{n\geqslant m}$ et $(v_n)_{n\geqslant m}$ deux suites de nombres réels,

Si $u_n \sim v_n$ et si $\forall n \geqslant m, \ v_n \geqslant 0$ alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Remarque : $\sum u_n$ et $\sum v_n~$ sont de même nature signifie :

 $\sum u_n$ converge si, et seulement si, $\sum v_n$ converge.

Absolue convergence.

Définition

Soit $(u_n)_{n\geqslant m}$ une suite de réels,

Dire que la série $\sum_{n\geqslant m}u_n$ est absolument convergente signifie que la série $\sum_{n\geqslant m}|u_n|$ est convergente.

Exemples: Voir la feuille_exo_1.

Théorème. (L'absolue convergence entraine la convergence)

Soit $(u_n)_{n \geqslant m}$ une suite de réels,

Si la série $\sum u_n$ est absolument convergente

alors elle est convergente

et $\left| \sum_{k=m}^{+\infty} u_k \right| \leqslant \sum_{k=m}^{+\infty} |u_k|$

Démonstration: (Celle faite au tableau)

On suppose que $\sum u_n$ est absolument convergente,

On définit les deux suites (u_n^+) et (u_n^-) par :

$$u_n^+ = \max(u_n, 0)$$
 et $u_n^- = \min(u_n, 0)$

on remarque que : $\forall n \in \mathbb{N}, \quad u_n = u_n^+ + u_n^-$

or
$$\begin{cases} \text{Pour tout } n \geqslant m, \quad 0 \leqslant u_n^+ \leqslant |u_n| \\ \text{et } \sum |u_n| \text{ converge} \end{cases}$$

$$\text{donc } \sum u_n^+ \text{ converge}$$

$$\text{et } \begin{cases} \text{Pour tout } n \geqslant m, \quad 0 \leqslant -u_n^- \leqslant |u_n| \\ \text{et } \sum |u_n| \text{ converge} \end{cases}$$

$$\text{donc } \sum -u_n^- \text{ converge et ainsi } \sum u_n^- \text{ converge}$$

donc (linéarité des séries convergentes) $\sum u_n$ converge. On a bien démontré que :

si
$$\sum u_n$$
 est absolument convergente alors $\sum u_n$ converge.

Attention la *réciproque* est fausse.

Contre-exemple : La série $\sum_{n\geq 1} \frac{(-1)^n}{n}$ est convergente, mais pas absolument convergente.

5.1 Convergence commutative.

Théorème.

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 une suite de réels et σ une bijection de \mathbb{N} dans \mathbb{N} ,

Si la série $\sum u_n$ est absolument convergente alors $\sum u_{\sigma(n)}$ est convergente

et $\sum_{k=0}^{+\infty} u_{\sigma(k)} = \sum_{k=0}^{+\infty} u_k$.

Ce résultat est admis et nous servira dans le chapitre "Probabilité".

Autrement dit:

- La valeur de la somme d'une série absolument convergente ne dépend pas de l'ordre d'énumération de ses termes.
- Si la série est absolument convergente alors elle est commutativement convergente.