Correction du devoir surveillé du 27/09/2024

Questions préliminaires.

1) On note
$$\varphi$$
 $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$

$$x \longmapsto \tan(x)$$

 φ est continue et strictement croissante sur l'intervalle $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ donc (théorème de la bijection)

$$\varphi\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right) = \left|\lim_{-\frac{\pi}{2}}\varphi,\lim_{\frac{\pi}{2}}\varphi\right[= \mathbb{R} \qquad \text{et} \qquad \varphi \text{ est bijective de } \left]-\frac{\pi}{2},\frac{\pi}{2}\right[\text{ dans } \mathbb{R}.$$

La fonction arctangente est la réciproque de cette fonction φ .

2)
$$\tan(0) = 0$$
 et $0 \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{donc} \left[\operatorname{arctan}(0) = 0 \right]$
 $\tan\left(\frac{\pi}{4}\right) = 1$ et $\frac{\pi}{4} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{donc} \left[\operatorname{arctan}(1) = \frac{\pi}{4} \right]$
 $\tan\left(-\frac{\pi}{4}\right) = -1$ et $-\frac{\pi}{4} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{donc} \left[\operatorname{arctan}(-1) = -\frac{\pi}{4} \right]$

3) φ est bijective de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{dans } \mathbb{R}, \varphi \text{ est dérivable sur } \right] -\frac{\pi}{2}, \frac{\pi}{2} \left[\text{ et } \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \varphi'(x) = 1 + \tan^2(x) \neq 0,$ donc (dérivation de la bijection réciproque) φ^{-1} est dérivable sur \mathbb{R} et pour $x \in \mathbb{R}$,

$$(\varphi^{-1})'(x) = \frac{1}{\varphi'(\varphi^{-1}(x))}$$
$$= \frac{1}{1 + \tan^2(\arctan(x))}$$
$$= \frac{1}{1 + x^2}$$

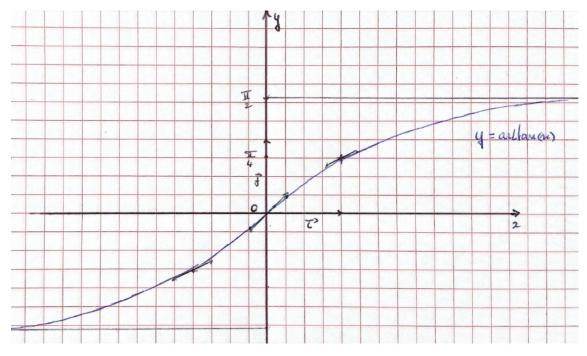
$$= \frac{1}{1+x^2}$$

La fonction arctangente est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$

4)
$$\arctan(1) = \frac{\pi}{4}$$
 et $\arctan'(1) = \frac{1}{2}$ donc

$$T: y = \frac{1}{2}(x-1) + \frac{\pi}{4}$$

5) A faire avec soin.



Problème 1

- 1) a) Le degré est l'indice du dernier coefficient non nul, $deg(P_n) = 2n + 1$ et $deg(P_$
 - b) (Ici il y a une erreur d'énoncé).

Réponse 1: P_n est somme de monôme de degré impair donc pour tout $x \in \mathbb{R}$, $P_n(-x) = -P_n(x)$ et ainsi

la fonction
$$P_n$$
 est impaire

Réponse 2 : P_n est ici définie sur [0,1] qui n'est pas symétrique par rapport à zéro donc

la fonction
$$P_n$$
 n'est ni paire, ni impaire

c)

$$P_0: x \mapsto x , \quad P_1: x \mapsto x - \frac{1}{3}x^3 , \quad P_2: x \mapsto x - \frac{1}{3}x^3 + \frac{1}{5}x^5 \quad \text{et} \quad P_3: x \mapsto x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7$$

- 2) a) La fonction arctangente est dérivable sur \mathbb{R} et $\boxed{\forall x \in \mathbb{R}, \ \operatorname{arctan}'(x) = \frac{1}{1+x^2}}$ et lorsque q est un réel différent de 1, $\boxed{\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}}$
 - b) Comme polynôme P_n est dérivable sur \mathbb{R} et $\forall x \in [0,1]$,

$$P'_n(x) = \sum_{k=0}^n (-1)^k x^{2k}$$

$$= \sum_{k=0}^n (-x^2)^k$$

$$= \frac{1 - (-x^2)^{n+1}}{1 + x^2} \qquad car -x^2 \neq 1$$

Sachant que $\arctan'(x) = \frac{1}{1+x^2}$ il vient :

Pour tout
$$x \in [0,1]$$
, $\arctan'(x) - P'_n(x) = \frac{(-x^2)^{n+1}}{1+x^2}$

- c) On note ici f la fonction $\arctan -P_n$
 - Si n est pair. on a $(-x^2)^{n+1} < 0$ sur [0,1]

x	0	1
f'(x)	0 –	
f	0	$\frac{\pi}{4} - P_n(1)$

On en déduit le signe de f sur [0,1]:

x	0 1	
f(x)	0 –	

• Si n est impair.

on a $(-x^2)^{n+1} > 0$ sur [0,1]

x	0		1
f'(x)	0	+	
f	0		$\frac{\pi}{4} - P_n(1)$

On en déduit le signe de f sur [0,1]:

x	0		1
f(x)	0	+	

3)
$$P_n(x) = \sum_{k=0}^n \frac{(-1)^k x^{2k+1}}{2k+1}$$
 et $P_{n+1}(x) = \sum_{k=0}^{n+1} \frac{(-1)^k x^{2k+1}}{2k+1}$ donc $P_{n+1}(x) - P_n(x) = \frac{(-1)^{n+1} x^{2(n+1)+1}}{2(n+1)+1}$ et comme pour x dans $[0,1], \ x \geqslant 0$, il vient alors, $\forall x \in [0,1], \ \forall n \in \mathbb{N}, \quad |P_{n+1}(x) - P_n(x)| \leqslant \frac{x^{2n+3}}{2n+3}$

4) D'après la question 2)c),

si
$$n$$
 est pair, $\forall x \in [0,1], P_{n+1}(x) \leq \arctan(x) \leq P_n(x)$
si n est impair, $\forall x \in [0,1], P_n(x) \leq \arctan(x) \leq P_{n+1}(x)$

Dans tous les cas : $|P_n(x)|$ et $P_{n+1}(x)$ encadrent $\arctan(x)$

si
$$n$$
 est pair, $P_{n+1}(x) \leq \arctan(x) \leq P_n(x)$ donc $P_{n+1}(x) - P_n(x) \leq \arctan(x) - P_n(x) \leq 0$ d'où $|\arctan(x) - P_n(x)| \leq |P_{n+1}(x) - P_n(x)|$

si
$$n$$
 est impair, $P_n(x) \leq \arctan(x) \leq P_{n+1}(x)$ donc $0 \leq \arctan(x) - P_n(x) \leq P_{n+1}(x) - P_n(x)$ d'où $|\arctan(x) - P_n(x)| \leq |P_{n+1}(x) - P_n(x)|$

dans tous les cas on a bien $|\arctan(x) - P_n(x)| \le |P_{n+1}(x) - P_n(x)|$ et ainsi en utilisant le résultat de la question 3) on obtient : $n \in \mathbb{N}$, $|\arctan(x) - P_n(x)| \le \frac{x^{2n+3}}{2n+3}$

5) Pour $x \in [0,1]$ on a : $\forall n \in \mathbb{N}, \ 0 \leqslant \frac{x^{2n+3}}{2n+3} \leqslant \frac{1}{2n+3}$

l'inégalité de la question précédente devient $|\arctan(x) - P_n(x)| \leq \frac{1}{2n+3}$

or $\lim_{n\to+\infty}\frac{1}{2n+3}=0$ donc (corollaire du théorème des gendarmes) la suite des $P_n(x)$ converge vers $\arctan(x)$,

autrement dit : la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ existe et vaut $\arctan(x)$

6) a) La questions 4) donne en prenant x = 1 et n = 2m: $P_{2m+1}(1) \leq \arctan(1) \leq P_{2m}(1)$ ce qui donne $4P_{2m+1}(1) \leqslant \pi \leqslant 4P_{2m}(1)$

de plus la 4) donne aussi $|P_{2m+1}(1) - P_{2m}(1)| \le \frac{1}{4m+3}$ ou encore $|4P_{2m+1}(1) - 4P_{2m}(1)| \le \frac{4}{4m+3}$ or $\frac{4}{4m+3} \leqslant \frac{1}{m}$, donc

le segment $[4P_{2m+1}(1), 4P_{2m}(1)]$ fournit un encadrement de π à $\frac{1}{m}$ près.

def Pn(n,t): b)

""" retourne la valeur de Pn(t) """

$$S = 0$$

a,
$$b = t$$
, $-t**2$

return S

- c) def encadrepi(epsilon):
 """retourne un un encadrement de pi à epsilon près
 sous la forme d'un tuple"""
 m = int(1/epsilon) + 1
 a = 4*Pn(2*m, 1)
 return a-epsilon, a
- 7) a) Le majorant de l'erreur contient un facteur x^{2n+3} qui tend géométriquement vers 0 quand $0 \le x < 1$ c'est pourquoi :

lorsque $x \in [0,1[$, la suite des $P_n(x)$ converge beaucoup plus vite vers $\arctan(x)$ que lorsque x=1

b) Soit $\theta \in]0, \pi/2[$,

$$\frac{1 - \cos(2\theta)}{\sin(2\theta)} = \frac{1 - \cos^2(\theta) + \sin^2(\theta)}{2\sin(\theta)\cos(\theta)}$$

$$= \frac{2\sin^2(\theta)}{2\sin(\theta)\cos(\theta)}$$

$$= \frac{\sin(\theta)}{\cos(\theta)}$$

$$\tan(\theta) = \frac{1 - \cos(2\theta)}{\sin(2\theta)}$$

En prenant :
$$\theta = \frac{\pi}{8}$$
, il vient : $\tan\left(\frac{\pi}{8}\right) = \frac{1 - \cos\left(\frac{\pi}{8}\right)}{\sin\left(\frac{\pi}{8}\right)}$

Connaissant le sinus et le cosinus de $\frac{\pi}{4}$ on obtient $\left[\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1\right]$

c) On a
$$\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$$
 et $\frac{\pi}{8} \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[\text{donc } \frac{\pi}{8} = \arctan(\sqrt{2} - 1) \text{ ou encore } \boxed{\pi = 8\arctan(\sqrt{2} - 1)} \right]$
On note $\boxed{x_0 = \sqrt{2} - 1}$,

En utilisant le résultat de la question 4) on obtient :

le segment
$$[8P_{2m+1}(x_0), 8P_{2m}(x_0)]$$
 fournit un encadrement de π à $\frac{2x_0^{4m}}{m}$ près.

8) a) Les relations de récurrence définissant (A_n) et (B_n) permettent d'affirmer que quel que soit l'entier n, si $A_n \in \mathbb{Z}$ et $B_n \in \mathbb{Z}$ alors $A_{n+1} \in \mathbb{Z}$ et $B_{n+1} \in \mathbb{Z}$, et comme de plus, A_0 et B_0 sont des entiers, on a bien : (principe du raisonnement par récurrence)

pour tout entier naturel n, A_n et B_n sont des entiers relatifs

- b) Montrons par récurrence sur k, que pour tout $k \in \mathbb{N}$, $(\sqrt{2}-1)^{2k+1} = A_k + \sqrt{2} B_k$.
 - Pour k = 0,

$$(\sqrt{2}-1)^{2k+1} = \sqrt{2}-1$$
 et $A_0 + \sqrt{2}B_0 = \sqrt{2}-1$

La propriété est vraie pour k = 0.

• Soit $k \in \mathbb{N}$ tel que $(\sqrt{2}-1)^{2k+1} = A_k + \sqrt{2} B_k$

$$(\sqrt{2}-1)^{2(k+1)+1} = (\sqrt{2}-1)^{2k+1} (\sqrt{2}-1)^2$$

$$= (A_k + \sqrt{2}B_k) (3 - 2\sqrt{2})$$

$$= (3A_k - 4B_k) + \sqrt{2} (-2A_k + 3B_k)$$

$$= A_{k+1} + \sqrt{2}B_{k+1}$$

Si la propriété est vraie à un rang k, elle l'est au rang k + 1.

En conclusion:

pour tout
$$k \in \mathbb{N}$$
, $(\sqrt{2} - 1)^{2k+1} = A_k + \sqrt{2} B_k$

9) a) On utilise la relation de récurrence définissant la suite (A_n) et (B_n) .

```
def coeffAB(n):
    a, b = -1, 1
    for k in range(n):
        a, b = 3*a - 4*b, -2*a + 3*b
    return a, b
```

b) On n'utilise pas la fonction précédente pour ne pas recalculer à chaque tour de boucle tous les termes de la suite.

c) On utilise ici la formule :

$$P_n(x_0) = \underbrace{\sum_{k=0}^{n} \frac{(-1)^k A_k}{2k+1}}_{S_1} + \sqrt{2} \underbrace{\sum_{k=0}^{n} \frac{(-1)^k B_k}{2k+1}}_{S_2}$$

```
def calculPn(n, L):
    S1, S2 = 0, 0
    for k in range(n+1):
        S1 += (-1)**k * L[k][0] / (2*k+1)  # L[k][0] vaut Ak
        S2 += (-1)**k * L[k][1] / (2*k+1)  # L[k][0] vaut Bk
    return S1 + 2**(0.5) * S2
```

Si on exécute ces programmes:

```
eps = 10**(-10)

n, L = listecoeffAB(eps)
Pn = calculPn(n, L)
print(8*Pn)
print(pi)
on obtient l'affichage:
3.1415926590561867
3.141592653589793
```

Les 1000 premières décimales de π sont :

 $3,1415926535\,8979323846\,2643383279\,5028841971\,6939937510\,5820974944\,5923078164\,0628620899\,8628034825\,3421170679\,8214808651\,3282306647\,0938446095\,5058223172\,5359408128\,4811174502\,8410270193\,8521105559\,6446229489\,5493038196\,4428810975\,6659334461\,2847564823\,3786783165\,2712019091\,4564856692\,3460348610\,4543266482\,1339360726\,0249141273\,7245870066\,0631558817\,4881520920\,9628292540\,9171536436\,7892590360\,0113305305\,4882046652\,1384146951\,9415116094\,3305727036\,5759591953\,0921861173\,8193261179\,3105118548\,0744623799\,6274956735\,1885752724\,8912279381\,8301194912\,9833673362\,4406566430\,8602139494\,6395224737\,1907021798\,6094370277\,0539217176\,2931767523\,8467481846\,7669405132\,0005681271\,4526356082\,7785771342\,7577896091\,7363717872\,1468440901\,2249534301\,4654958537\,1050792279\,6892589235\,4201995611\,2129021960\,8640344181\,5981362977\,4771309960\,5187072113\,4999999837\,2978049951\,0597317328\,1609631859\,5024459455\,3469083026\,4252230825\,3344685035\,2619311881\,7101000313\,7838752886\,5875332083\,8142061717\,7669147303\,5982534904\,2875546873\,1159562863\,8823537875\,9375195778\,1857780532\,1712268066\,1300192787\,6611195909\,2164201989\ldots$

Problème 2

Partie 1

- 1) a) \bullet $p \in]0,1[$ donc pour tout n, $b_n = \binom{N}{n} p^n (1-p)^{N-n} \geqslant 0$
 - de plus \underline{b}_n est nul pour n>N donc la série converge et sa somme vaut :

$$\sum_{k=0}^{N} b_k = \sum_{k=0}^{N} {N \choose k} p^k (1-p)^{N-k}$$

$$= (p+(1-p))^N \qquad (formule \ du \ binôme)$$

$$= 1$$

En conclusion:

$$(b_n)$$
 vérifie (\mathcal{L})

b) nb_n est nul pour n > N donc la série converge et sa somme vaut :

$$\begin{split} \sum_{k=0}^{N} k b_k &= \sum_{k=0}^{N} k \binom{N}{k} p^k (1-p)^{N-k} \\ &= \sum_{k=1}^{N} N \binom{N-1}{k-1} p^k (1-p)^{N-k} \\ &= Np \sum_{k=1}^{N} \binom{N-1}{k-1} p^{k-1} (1-p)^{N-k} \\ &= Np \sum_{k=0}^{N-1} \binom{N-1}{k} p^k (1-p)^{N-1-k} \\ &= Np (p+(1-p))^{N-1} \qquad \textit{(formule du binôme)} \end{split}$$

$$\sum_{n\geqslant 0} nb_n \text{ converge et } \sum_{n=0}^{+\infty} nb_n = Np$$

- 2) a) $c_0 = 0 \ge 0$ et pour tout $n \ge 1$, $c_n = \frac{1}{2^n} \ge 0$
 - de plus :

$$\sum_{k=0}^{n} c_k = \sum_{k=1}^{n} \frac{1}{2^k}$$

$$= \sum_{k=0}^{n} \frac{1}{2^k} - 1$$

$$\underset{n \to +\infty}{\longrightarrow} \frac{1}{1 - \frac{1}{2}} - 1 = 1 \qquad (S\'{e}rie g\'{e}om\'{e}trique de raison } \frac{1}{2} \in]-1,1[)$$

donc $\sum c_n$ converge de sa somme vaut 1.

En conclusion :

$$(c_n)$$
 vérifie (\mathcal{L})

b) On sait que : $\sum_{n=0}^{+\infty} n \frac{1}{2^{n-1}}$ existe et vaut $\frac{1}{\left(1-\frac{1}{2}\right)^2} = 4$ (série géométrique dérivée d'ordre 1) donc $\sum_{n=0}^{+\infty} n \frac{1}{2^n}$ existe et vaut 2

$$\sum nc_n \text{ converge et } \sum_{n=0}^{+\infty} nc_n = 2$$

6

- 3) a) pour tout $n \in \mathbb{N}$, $d_n = \frac{2^n}{n!}e^{-2} \geqslant 0$
 - de plus on sait que $\sum_{n=0}^{+\infty} \frac{2^n}{n!}$ existe et vaut e^2 (série exponentielle) donc $\sum_{n=0}^{+\infty} d_n$ existe et vaut 1.

En conclusion:

$$(d_n)$$
 vérifie (\mathcal{L})

b) Pour $n \in \mathbb{N}$,

4) En posant $e_0 = 0$ et pour $n \ge 1$, $e_n = \frac{6}{(n\pi)^2}$ on a $\sum_{n=0}^{+\infty} e_n = 1$ (d'après le rappel au début de l'énoncé) et $\sum_{n=0}^{+\infty} ne_n$ diverge car $ne_n = \frac{6}{\pi^2 n}$ et $\sum_{n=0}^{+\infty} ne_n$ diverge (série harmonique).

On a bien défini une suite (e_n) vérifiant (\mathcal{L}) mais telle que $\sum ne_n$ diverge.

Partie 2.

1) a) Soit $x \in [0,1]$, $\forall n \in \mathbb{N}, \ 0 \leqslant u_n x^n \leqslant u_n \ \text{et comme} \ (u_n) \ \text{v\'erifie} \ (\mathcal{L}) \ \text{donc} \ \sum u_n \ \text{converge} \ \text{donc} \ (\textit{th\'eor\`eme de convergence}) \ \sum u_n x^n \ \text{converge}.$ pour tout $x \in [0,1], \ \sum_{n=0}^{+\infty} u_n x^n \ \text{existe donc}$

$$f_u$$
 est définie sur $[0,1]$

b)
$$[f_u(0) = u_0]$$
 et $f_u(1) = \sum_{n=0}^{+\infty} u_n = 1$

c) Soient x_1 et x_2 dans [0,1] tels que $x_1 < x_2$, comme (u_n) est à termes positifs ou nuls, $\forall k \in \mathbb{N}, u_k x_1^k \leqslant u_k x_2^k$ en sommant pour k allant de 0 à un entier n on obtient $\sum_{k=0}^n u_k x_1^k \leqslant \sum_{k=0}^n u_k x_2^k$ et en passant à la limite on obtient : $f(x_1) \leqslant f(x_2)$, (On peut passer à la limite car les deux sommes existent)

$$f$$
 est croissante sur $[0,1]$

2) a) Quel que soit $x \in \mathbb{R}$, la suite est nulle à partir de N+1 donc la série $\sum b_n x^n$ est convergente ainsi :

$$f_b$$
 est définie sur \mathbb{R}

b) $\forall x \in \mathbb{R}, \ f_b(x) = \sum_{k=0}^{N} b_k x^k \text{ donc } f_b \text{ est une fonction polynomiale et ainsi :}$

 f_b est dérivable sur \mathbb{R}

c) Soit $x \in \mathbb{R}$,

$$f_b(x) = \sum_{k=0}^{N} b_k x^k$$

$$= \binom{N}{k} p^k (1-p)^{N-k} x^k$$

$$= \binom{N}{k} (1-p)^{N-k} (px)^k$$

$$= (1-p+px)^N (formule du binôme)$$

pour tout
$$x \in \mathbb{R}$$
, $f_b(x) = (1 - p + px)^N$

d) La formule précédente donne pour tout $x \in \mathbb{R}$, $f_b'(x) = Np(1-p+px)^{N-1}$

$$f_b'(1) = Np$$

3) a) On sait que $\sum q^n$ converge si, et seulement si, -1 < q < 1 donc $\sum \left(\frac{x}{2}\right)^n$ converge si, et seulement si, $x \in]-2,2[$ or $c_nx^n = \left(\frac{x}{2}\right)^n$ donc

l'ensemble de définition de f_c est]-2,2[

b) Soit $x \in]-2, 2[$,

$$f_c(x) = \sum_{n=1}^{+\infty} \left(\frac{x}{2}\right)^n$$

$$= \frac{x}{2} \times \frac{1}{1 - \frac{x}{2}} \qquad (s\acute{e}rie\ g\acute{e}om\acute{e}trique)$$

$$\forall x \in]-2, 2[, f_c(x) = \frac{x}{2-x}]$$

c) $x \mapsto \frac{x}{2-x}$ est une fraction rationnelle définie sur] -2, 2 [donc elle est dérivable sur cet intervalle.

$$f_c$$
 est dérivable sur $]-2, 2[$

d) L'expression précédente donne $\forall x \in]-2$, $2[, f'_c(x) = \frac{1}{2-x} + \frac{x}{(2-x)^2} = \frac{2}{(2-x)^2}$ ce qui entraı̂ne bien :

$$f_c'(1) = 2$$

Partie 3.

1) $\forall n \in \mathbb{N}$, $S_{n+1} - S_n = u_{n+1} \geqslant 0$ donc (S_n) est croissante. La série $\sum_{k \geq 0} u_k$ converge et sa somme vaut S donc (S_n) converge vers S

 $\forall n \in \mathbb{N}, \quad R_{n+1} - R_n = -u_{n+1} \leq 0 \text{ donc } \overline{(R_n) \text{ est décroissante}}.$

 $\forall n \in \mathbb{N}, \quad R_n = S - S_n \text{ et } (S_n) \text{ converge vers } S \text{ donc } \boxed{(R_n) \text{ converge vers } 0}$

2) Soit $k \in \mathbb{N}$. $\forall x \in [0, 1], \ x^k - x^{k+1} = x^k (1 - x) \text{ donc}$

$$\forall x \in]0,1[, x^k - x^{k+1} > 0 \text{ et pour } x \in \{0,1\}, x^k - x^{k+1} = 0$$

3) a) i. pour $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} u_k (1 - x^k) = \sum_{k=1}^{n} u_k (1 - x^k)$$

$$= \sum_{k=1}^{n} (R_{k-1} - R_k) (1 - x^k)$$

$$= \sum_{k=1}^{n} (R_{k-1} - R_k) - \sum_{k=1}^{n} R_{k-1} x^k + \sum_{k=1}^{n} R_k x^k$$

$$= R_0 - R_n - \sum_{k=0}^{n-1} R_k x^{k+1} + \sum_{k=1}^{n} R_k x^k$$

$$= R_0 - R_n - \sum_{k=0}^{n} R_k x^{k+1} + R_n x^{n+1} + \sum_{k=0}^{n} R_k x^k - R_0$$

Pour tout
$$n \in \mathbb{N}$$
, $\sum_{k=0}^{n} u_k (1 - x^k) = R_n(x^{n+1} - 1) + \sum_{k=0}^{n} R_k(x^k - x^{k+1})$

ii. On sait que

 \bullet $\sum u_n$ et $\sum u_n x^n$ convergent donc $\sum u_n (1-x^n)$ converge

2 (R_n) converge vers 0 et (x_n) bornée donc $R_n(x^{n+1}-1)$ tend vers 0 quand n tend vers $+\infty$.

la relation de la question précédente permet alors d'affirmer que $\sum R_n(x^n - x^{n+1})$ converge et en passant à la limite on obtient bien :

$$\sum_{k=0}^{+\infty} u_k (1 - x^k) = \sum_{k=0}^{+\infty} R_k (x^k - x^{k+1})$$

b) Si x=1 l'égalité est immédiate, raisonnons pour $x\in \left[0,1\right[.$ Soient $N\in \mathbb{N}^*$ et $x\in \left[0,1\right[,$

$$\sum_{k=0}^{N-1} R_k(x^k - x^{k+1}) \leqslant R_0 \sum_{k=0}^{N-1} (x^k - x^{k+1}) \qquad car(R_n) \text{ d\'ecroissante et } (x^k - x^{k+1}) \geqslant 0$$

$$\leqslant R_0(1 - x^N) \qquad (telescopage)$$

$$\sum_{k=N}^{+\infty} R_k(x^k - x^{k+1}) \leqslant R_N \sum_{k=N}^{+\infty} (x^k - x^{k+1})$$

$$\leqslant R_N(x^N - 0) \qquad car \ x \in [0, 1[$$

$$\leqslant R_N \qquad car \ x \in [0, 1[$$

or
$$\sum_{k=0}^{+\infty} u_k (1-x^k) = \sum_{k=0}^{N-1} R_k (x^k - x^{k+1}) + \sum_{k=N}^{+\infty} R_k (x^k - x^{k+1})$$

$$\sum_{k=0}^{+\infty} u_k (1 - x^k) \leqslant R_0 (1 - x^N) + R_N$$

c) Soit $\varepsilon > 0$,

• d'une part prenons un $N \in \mathbb{N}$ tel que $R_N \leqslant \frac{\varepsilon}{2}$ (ce N existe car (R_n) converge vers 0).

• d'autre part sachant que $\lim_{x\to 1} R_0(1-x^N) = 0$, on peut prendre un $\alpha>0$ tel que $\forall x\in [1-\alpha,1],\ R_0(1-x^N)\leqslant \frac{\varepsilon}{2}$

$$\operatorname{donc} \qquad \forall \varepsilon > 0, \exists \alpha > 0 : \forall x \in [1 - \alpha, 1], \ 0 \leqslant \sum_{k=0}^{+\infty} u_k (1 - x^k) \leqslant \frac{\varepsilon}{2} \ \operatorname{d'où} \ \left[\lim_{x \to 1} \sum_{k=0}^{+\infty} u_k (1 - x^k) = 0 \right]$$

d) On a:
$$f(1) - f(x) = \sum_{k=0}^{+\infty} u_k (1 - x^k)$$

donc on vient de montrer que $\lim_{x\to 1}(f(1)-f(x))=0$ ou encore $\lim_{x\to 1}f(x)=f(1)$

f est continue en 1

4) a) Ici le signe "=" signifie "de même nature et de somme égale en cas de convergence"

$$\sum_{k=0}^{+\infty} k u_k = \sum_{k=1}^{+\infty} \sum_{i=1}^{+\infty} u_k \mathbb{1}_{i \leqslant k}$$

$$= \sum_{i=1}^{+\infty} \sum_{k=1}^{+\infty} u_k \mathbb{1}_{i \leqslant k} \qquad (admis\ au\ d\'ebut\ du\ sujet)$$

$$= \sum_{i=1}^{+\infty} \sum_{k=i}^{+\infty} u_k$$

$$= \sum_{i=1}^{+\infty} R_{i-1}$$

$$= \sum_{k=0}^{+\infty} R_k$$

donc

$$\sum_{k\geqslant 0} ku_k \text{ converge si et seulement si, } \sum_{k\geqslant 0} R_k \text{ converge} \qquad \text{ et alors : } \sum_{k=0}^{+\infty} ku_k = \sum_{k=0}^{+\infty} R_k.$$

b) i. Soit $x \in [0, 1[$,

$$f(1) - f(x) = \sum_{k=0}^{+\infty} u_k (1 - x^k)$$

$$= \sum_{k=0}^{+\infty} R_k (x^k - x^{k+1}) \qquad (d'après 3)a))$$

$$= \sum_{k=0}^{+\infty} R_k x^k (1 - x)$$

$$= (1 - x) \sum_{k=1}^{+\infty} R_k x^k$$

donc

Pour tout
$$x \in [0,1[, \frac{f(1) - f(x)}{1 - x} - \sum_{n=0}^{+\infty} R_n = \sum_{k=0}^{+\infty} R_k(x^k - 1)]$$

ii. La suite (R_n) possède les mêmes propriétés que (u_n) à la question 3) (à un coefficient près!)

donc
$$\lim_{x \to 1} \sum_{k=0}^{+\infty} R_k(x^k - 1) = 0$$
 et on en déduit que $\lim_{x \to 1} \frac{f(1) - f(x)}{1 - x} = \sum_{n=0}^{+\infty} R_n$,

$$f$$
 est dérivable en 1

iii. On vient de montrer que $f'(1) = \sum_{n=0}^{+\infty} R_n$, et avec le résultat de la question 4)a) on obtient finalement :

$$f'(1) = \sum_{n=0}^{+\infty} nu_n$$

FIN DE LA CORRECTION