Structure vectorielle.

On travaille avec des nombres réels ou des nombres complexes; pour simplifier on écrira : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Les lettres n, m, p et r désignent dans tout ce chapitre des entiers naturels non nuls.

1.1 Définition

Définition (Compléments)

On note E un ensemble muni de deux opérations : une loi de composition interne + et une loi de composition externe . (définie sur $\mathbb{K} \times E$).

Dire que (E,+,.) est un \mathbb{K} -espace vectoriel signifie que les deux lois ont les propriétés suivantes :

- a_1) pour tout u et v de E, u+v=v+u
- a_2) pour tout u, v, w des éléments de E, (u+v) + w = u + (v+w)
- a_3) il existe 0_E un élément de E tel que pour tout $u \in E$, $u + 0_E = u$
- a_4) pour tout $u ext{ de } E$, il existe un $u' ext{ dans } E$ tel que $u + u' = 0_E$
- b_1) pour tout u de E 1.u = u
- **b2)** pour tout u de E pour tout α et β de \mathbb{K} , $\alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u$
- **b₃)** pour tout u de E pour tout α et β de \mathbb{K} , $(\alpha + \beta).u = \alpha.u + \beta.u$
- **b4)** pour tout u et v de E, pour tout α de \mathbb{K} , $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$

Remarques: ① Les éléments d'un espace vectoriel sont appelés vecteurs.

② Les éléments de K, (les nombres), sont appelés scalaires.

Propositions

- $\mathbf{0}$ 0_E est unique et est nommé : vecteur nul de E.
- **2** Pour tout $v \in E$ et $k \in \mathbb{K}$, $kv = 0_E$ si, et seulement si, k = 0 ou $v = 0_E$.
- 3 u' est unique et on le note -u.
- **4** $\forall v \in E$, -v = (-1)v.
- **6** $\forall v \in E \text{ et } \forall k \in \mathbb{K}, \qquad (-k)v = k(-v) = -(kv).$

Démonstration.

(On peut démontrer 0, 2, 3, 4 et 5 avec les a_i) et b_i), mais on rencontre rarement ce type de raisonnement en BCPST)

Théorème.

Si E est un espace vectoriel alors :

$$\bullet \ \forall (\alpha, \beta) \in \mathbb{K}^2, \quad \forall (u, v) \in F^2, \quad \alpha u + \beta v \in E$$

En effet:

1.2 Sommes de n vecteurs.

Définition.

Soit (u_n) une suite de vecteurs de E, on définit

$$\sum_{k=0}^{0} u_k = u_0 \quad \text{ et } \quad \forall n \in \mathbb{N}, \ \sum_{k=0}^{n+1} u_k = \left(\sum_{k=0}^{n} u_k\right) + u_{n+1}$$

Plus simplement on pourra écrire : $\sum_{k=0}^{n} u_k = \underbrace{u_0 + \dots + u_n}_{n+1 \text{ vecteurs}}$

Remarque: on ne fait aucune somme d'un nombre infini de vecteurs.

Proposition.

Soient n un entier naturel non nul et $(u_1, \ldots, u_n) \in E^n$,

• On ne change pas la somme des vecteurs en modifiant l'ordre des vecteurs.

Autrement dit : Si σ est une bijection de [1, n] dans [1, n] alors $\sum_{k=0}^{n} u_{\sigma(k)} = \sum_{k=0}^{n} u_{k}$

2 Pour $(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$ et $a \in \mathbb{K}$, $a\left(\sum_{k=1}^n \alpha_k u_k\right) = \sum_{k=1}^n (a\alpha_k)u_k$

Remarques:

- Les points 2 et 3 permettront de montrer que $Vect(u_1,...,u_n)$ est stable par combinaison linéaire.
- On peut faire des changements indices comme sur les sommes de nombres.

1.3 Exemples de références.

Des \mathbb{R} -espaces vectoriels :

E: l'ensemble des vecteurs du plan (resp. de l'espace) (avec $0_E = \vec{0}$)

 $E = \mathbb{R}^n$, pour *n* un entier naturel non nul (avec $0_E = (0, 0, \dots, 0)$)

 $E = \mathcal{M}_{n,m}(\mathbb{R})$, pour n et m deux entiers naturels non nuls (avec 0_E : la matrice nulle)

(complément) E: l'ensemble des suites réelles (avec 0_E : la suite nulle)

E: l'ensemble des fonctions de I dans \mathbb{R} , pour I un intervalle de \mathbb{R} (avec 0_E : fonction nulle sur I)

E: l'ensemble des fonctions de classe C^n sur I un intervalle de \mathbb{R} (avec 0_E : fonction nulle sur I)

E: l'ensemble des fonctions de classe C^{∞} sur I un intervalle de \mathbb{R} (avec $0_E:$ fonction nulle sur I)

 $E = \mathbb{R}[X]$ (avec 0_E : le polynôme nul)

E: l'ensemble des variables aléatoires à valeurs réelles. (avec 0_E : la variable certaine égale à 0.)

Des \mathbb{C} -espaces vectoriels :

 $E = \mathbb{C}^n$, pour *n* un entier naturel non nul (avec $0_E = (0, 0, \dots, 0)$)

 $E = \mathcal{M}_{n,m}(\mathbb{C})$, pour n et m deux entiers naturels non nuls (avec 0_E : la matrice nulle)

(complément) E: l'ensemble des suites à valeurs complexes (avec 0_E : la suite nulle)

 $E = \mathbb{C}[X]$ (avec 0_E : le polynôme nul)

On définit les deux opérations suivantes pour E et F deux espaces vectoriels :

• Pour f une application E dans F et α un scalaire on définit l'application : $\alpha f: E \longrightarrow F$

• Pour deux applications f et g de E dans F on définit l'application : $f+g: E \longrightarrow F$ $u \longmapsto f(u)+g(u)$

L'ensemble des applications de E dans F (noté F^E) muni de ces deux lois est un espace vectoriel.

Sous-espace vectoriel

2.1Définition.

Définition:

Soient (E, +, .) un \mathbb{K} -espace vectoriel et F une partie de E,

Dire que F est un sous-espace vectoriel de E signifie que :

(F, +, .) est un espace vectoriel.

Caractérisation:

Soient E un \mathbb{K} -espace vectoriel et F un ensemble

F est un sous-espace vectoriel de E si, et seulement si, :

 $\mathbf{0} \ F \subset E$.

2 $0_E \in F$.

Remarques:

- Certains remplacent **2** par $F \neq \emptyset$.
- Certains remplacent **3** par $\forall \lambda \in \mathbb{K}$, $\forall (u, v) \in F^2$, $u + \lambda v \in F$
- D'autres remplacent **3** par $\forall \alpha \in \mathbb{K}, \forall u \in F, \quad \alpha u \in F.$ et $\forall (u,v) \in F^2, u+v \in F.$
- Le singleton $\{0_E\}$ est un sous-espace vectoriel de E, c'est d'ailleurs le seul qui contient un nombre fini d'éléments. (Tous les autres contiennent un nombre infini de vecteurs)

Des exemples dans la feuille_Cours_3

2.2Intersection de sous-espaces vectoriels

Théorème:

Soient E un \mathbb{K} -espace vectoriel et F_1 , F_2 deux parties de E.

Si F_1 et F_2 sont deux sous-espaces vectoriels de E

alors $F_1 \cap F_2$ est un sous-espace vectoriel de E.

Démonstration. Voir la feuille_Cours_3

Théorème: (Généralisation)

Soient E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$ et F_1, \ldots, F_n des parties de E.

Si F_1, \ldots, F_n sont des sous-espaces vectoriels de E,

alors $\bigcap^n F_i$ est un sous-espace vectoriel de E.

Démonstration.

Attention: En général, la réunion de deux sous-espaces vectoriels n'est pas un sous-espace vectoriel. Une condition nécessaire et suffisante : "l'un est inclus dans l'autre" (voir la feuille_Cours_3)

$$Vect(u_1,\ldots,u_n)$$

3.1 Combinaisons linéaires.

Dire qu'un vecteur v de E est une **combinaison linéaire** des vecteurs u_1, \ldots, u_n de Esignifie qu'il existe $\lambda_1, \dots, \lambda_n$ des scalaires tels que : $v = \sum_i \lambda_i u_i$.

Remarque: Un espace vectoriel est stable par combinaisons linéaires.

Définitions - notations. 3.2

Définition.

Soit (u_1, \ldots, u_n) une famille de n vecteurs de E,

On note $\text{Vect}(u_1,\ldots,u_n)$ l'ensemble des éléments de E qui sont combinaisons linéaires des vecteurs u_1, \ldots, u_n .

$$\operatorname{Vect}(u_1, \dots, u_n) = \left\{ \sum_{i=1}^n \lambda_i u_i \mid (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\} \text{ ou encore} = \left\{ x \in E \mid \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \mid x = \sum_{i=1}^n \lambda_i u_i \right\}$$

Pour $x \in E$, $x \in \text{Vect}(u_1, \dots, u_n) \iff \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n : x = \sum_{i=1}^n \lambda_i u_i$

3.3 C'est un sous-espace vectoriel.

Proposition: Pour u_1, \ldots, u_n des vecteurs de E, $Vect(u_1, \ldots, u_n)$ est un sous-espace vectoriel de E.

Démonstration. On note $F = \text{Vect}(u_1, ..., u_n)$ où $u_1, ..., u_n$ sont des vecteurs de E• E est un \mathbb{K} -espace vectoriel et les u_i sont dans E donc $F \subset E$.

- $0_E = \sum_{k=1}^n 0u_k \text{ donc } 0_E \in F$ Soient $v_1 = \sum_{k=1}^n \alpha_k u_k$ et $v_2 = \sum_{k=1}^n \beta_k u_k$ deux vecteurs de F et λ_1 , λ_2 deux éléments de \mathbb{K} .

$$\lambda_1 v_1 + \lambda_2 v_2 = \lambda_1 \sum_{k=1}^n \alpha_k u_k + \lambda_2 \sum_{k=1}^n \beta_k u_k$$

$$= \sum_{k=1}^n \lambda_1 \alpha_k u_k + \sum_{k=1}^n \lambda_2 \beta_k u_k$$

$$= \sum_{k=1}^n (\lambda_1 \alpha_k u_k + \lambda_2 \beta_k u_k)$$

$$= \sum_{k=1}^n (\lambda_1 \alpha_k u_k + \lambda_2 \beta_k) u_k$$

$$\in F$$

En conclusion : F est un sous-espace vectoriel.

Remarques:

- $Vect(u_1, \ldots, u_n)$ est le plus petit sous-espace vectoriel de E contenant les vecteurs (u_1, \ldots, u_n)
- $Vect(u_1, \ldots, u_n)$ est appelé sous-espace vectoriel engendré par les vecteurs u_1, \ldots, u_n .
- C'est un autre moyen de montrer qu'une partie de E est un sous-espace vectoriel

3.4 Opérations élémentaires.

On appelle opérations élémentaires sur la famille (u_1, u_2, \dots, u_m) les transformations :

- Permuter deux vecteurs : $u_i \longleftrightarrow u_j$
- Multiplier un vecteur par un scalaire λ <u>non nul</u> : $u_i \leftarrow \lambda u_i$
- Ajouter un vecteur à un autre vecteur : $u_i \leftarrow u_i + u_j$

On combine souvent ces opérations. Par exemple on fait souvent des transvections : $u_i \leftarrow u_i - \alpha u_j$ avec $i \neq j$

Propositions

Soit (u_1, \ldots, u_m) une famille de vecteurs de E on note : $F = \text{Vect}(u_1, u_2, \ldots, u_m)$.

- \bullet On ne modifie pas F en changeant l'ordre des u_i .
- **2** On ne modifie pas F par des opérations élémentaires sur les u_i .
- $\mbox{\bf 0}$ On ne modifie pas F en supprimant $~0_E~$ s'il est dans la liste des $u_i.$
- \bullet On ne modifie pas F en ajoutant à un vecteur u_i une combinaison linéaire des autres vecteurs.

Démonstrations.

3.5 Familles génératrices.

On note E un espace vectoriel et F un sous-espace vectoriel de E.

Définition:

Soit $(u_1, u_2, ..., u_n)$ une famille de vecteurs de EDire que $(u_1, u_2, ..., u_n)$ est une **famille génératrice** de F signifie que, $F = \text{Vect}(u_1, ..., u_n)$

Remarque : En pratique lorsque $(u_1, u_2, \dots, u_n) \in F^n$,

 $(u_1, u_2, ..., u_n)$ est une **famille génératrice** de F si et seulement si, $\forall v \in F, \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n$: $v = \sum_{k=1}^n \lambda_k u_k$

3.6 Espace vectoriel de dimension finie.

Définition

Dire qu'un espace vectoriel E est de dimension finie signifie qu'il existe $n \in \mathbb{N}^*$ et $(u_1, \dots, u_n) \in E^n$ tels que :

$$E = \operatorname{Vect}(u_1, u_2, \dots, u_n)$$

3.7 Bases canoniques.

Dans \mathbb{R}^n ou \mathbb{C}^n .

Dans $\mathcal{M}_{n,1}(\mathbb{R})$ et $\mathcal{M}_{n,1}(\mathbb{C})$.

Dans $\mathbb{R}_n[X]$ ou $\mathbb{C}_n[X]$

Familles libres.

Soient E un espace vectoriel sur \mathbb{K} et n un entier naturel non nul.

4.1 Définition.

Définition:

Soit (u_1, u_2, \ldots, u_n) une famille de vecteurs de E, dire que (u_1, u_2, \ldots, u_n) est une **famille libre** signifie que, quel que soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$, si $\sum_{k=1}^n \lambda_k u_k = 0_E$ alors $\forall k \in [1; n], \quad \lambda_k = 0$

Remarques:

- La famille est liée lorsqu'il existe $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$ tel que $\sum_{k=1}^n \lambda_k u_k = 0_E$
- (u_1, \ldots, u_n) est libre si, et seulement si, $\forall (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$, $\sum_{k=1}^n \lambda_k u_k = 0_E \iff \forall k \in [1; n], \ \lambda_k = 0$

4.2 Identification.

Théorème (Unicité de l'écriture sur une famille libre. Identification.) :

Soient (u_1, u_2, \dots, u_n) une famille de vecteurs de E, $(a_1, a_2, \dots, a_n) \in \mathbb{K}^n$ et $(b_1, b_2, \dots, b_n) \in \mathbb{K}^n$. Si (u_1, u_2, \dots, u_n) est libre alors on a l'équivalence : $a_1u_1 + a_2u_2 + \dots + a_nu_n = b_1u_1 + b_2u_2 + \dots + b_nu_n \iff (a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$

En effet:

4.3Familles de polynômes.

Toute famille finie de polynômes non nuls de degré deux à deux distincts est libre. Théorème

Démonstration.

(WLOG) on suppose que $0 \leq \deg(P_1) < \cdots < \deg(P_n)$

Soit
$$(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$$
 tel que $\sum_{k=1}^n \lambda_k P_k = 0$
on raisonne par l'absurde en supposant $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$

en notant :
$$m = \max(\{k \in [1, n] \mid \lambda_k \neq 0 \})$$
 on obtient : $\sum_{k=1}^m \lambda_k P_k = 0$

comme
$$\lambda_m \neq 0,$$
 on en déduit que : $P_m = -\frac{1}{\lambda_m} \sum_{k=1}^{m-1} \lambda_k P_k$

mais l'hypothèse sur les degrés entraı̂ne que $-\frac{1}{\lambda_m}\sum_{k=1}^{m-1}\lambda_k P_k$ est de degré strictement inférieur à $\deg(P_m)$

C'est impossible, donc nécessairement tous les λ_i sont nuls et ainsi la famille est libre.

Bases.

5.1 Definition d'une base.

Définition:

Soient u_1, \ldots, u_n des vecteurs de E. Dire que (u_1, \ldots, u_n) est une base de E signifie que, (u_1, \ldots, u_n) est une famille libre et génératrice de E.

Remarque: Si (u_1, \ldots, u_n) est une famille libre alors c'est une base de Vect (u_1, \ldots, u_n) .

 $En\ effet:$

Caractérisation d'une base. 5.2

Théorème:

Soient u_1, \ldots, u_n des vecteurs de E, (u_1, \ldots, u_n) est une base de E si, et seulement si, pour tout vecteur v de E, il existe une unique $(x_1, \ldots, x_n) \in \mathbb{K}^n$ tel que : $v = \sum_{k=1}^n x_k u_k$

Démonstration.

Rapidement.

D'une part $(u_1, ..., u_n)$ est génératrice si, et seulement si, $\forall v \in E : \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n : v = \sum_{k=1}^n \lambda_k u_k$

D'autre part $(u_1,...,u_n)$ est libre si, et seulement si,

$$u_1, ..., u_n$$
) est libre si, et seulement si,
$$\forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, (\lambda_1', ..., \lambda_n') \in \mathbb{K}^n, \qquad \underbrace{\sum_{k=1}^n \lambda_k u_k = \sum_{k=1}^n \lambda_k' u_k}_{\text{unicité}} \Longrightarrow (\lambda_1, ..., \lambda_n) = (\lambda_1', ..., \lambda_n')$$

On a bien

$$(u_1,...,u_n)$$
 est libre et génératrice si, et seulement si, $\forall v \in E$: $\exists ! (\lambda_1,...,\lambda_n) \in \mathbb{K}^n : v = \sum_{k=1}^n \lambda_k u_k$ existence et unicité

Coordonnées dans une base.

6.1 Définition.

Définition:

 $\mathcal{B} = (e_1, ..., e_n)$ est une base de E,

à chaque vecteur v de E on peut associer l'unique matrice $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ telle que : $v = x_1e_1 + \cdots + x_ne_n$

Cette matrice est appelée : matrice colonne des coordonnées de v dans la base $\mathcal B$

On note: $\operatorname{Coord}_{\mathcal{B}}(v) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Remarque:

$$\operatorname{Coord}_{\mathcal{B}}(v) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \iff v = x_1 e_1 + \dots + x_n e_n$$

6.2 Application $v \longmapsto \operatorname{Coord}_{\mathcal{B}}(v)$

Proposition:

Si $\mathcal{B}=(e_1,e_2,...,e_n)$ est une base de E alors l'application $\Phi:E\longrightarrow \mathscr{M}_{n,1}(\mathbb{K})$ qui à v associe $\operatorname{Coord}_{\mathcal{B}}(v)$ est un isomorphisme.

Rappels : Φ est linéaire et bijective.

• Linéaire : $\forall (\alpha, \beta) \in \mathbb{K}^2, \forall (u, v) \in E^2, \ \Phi(\alpha u + \beta v) = \alpha \Phi(u) + \beta \Phi(v)$

• Bijective: $\forall X \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! u \in E : \Phi(u) = X$

Démonstration:

Proposition:

Soient \mathcal{B} une base de E et $u_1, \dots u_n$ des vecteurs de E.

- $\bullet \text{ Pour tout } v \in E \text{ , } v \in \text{Vect}(u_1, \dots, u_n) \iff \text{Coord}_{\mathscr{B}}(v) \in \text{Vect}(\text{Coord}_{\mathscr{B}}(u_1), \dots, \text{Coord}_{\mathscr{B}}(u_n))$
- $\mathbf{2}(u_1,\ldots,u_n)$ est libre si, et seulement si, $(\operatorname{Coord}_{\mathscr{B}}(u_1),\ldots,\operatorname{Coord}_{\mathscr{B}}(u_n))$ est libre.

Démonstration :

6.3 Matrice d'une famille de vecteurs dans une base.

Définition (Matrice d'une famille de vecteurs dans une base) :

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E, à chaque famille de vecteurs $(v_1, ..., v_m)$ de E on peut associer l'unique matrice de M de $\mathscr{M}_{n,m}(\mathbb{K})$ telle que : pour tout $j \in [1; m]$, la j-ième colonne de M est $\operatorname{Coord}_{\mathscr{B}}(v_j)$.

Cette matrice est la matrice de la famille de vecteurs de (v_1, \ldots, v_m) dans la base \mathcal{B} .

On la note : $Mat_{\mathscr{B}}(v_1,\ldots,v_m)$

Remarques:

• On peut résumer avec la relation.

$$\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_m) = \left(\operatorname{Coord}_{\mathscr{B}}(v_1) \mid \cdots \mid \operatorname{Coord}_{\mathscr{B}}(v_m)\right)$$

• Multiplication par une matrice colonne :

$$\operatorname{Mat}_{\mathscr{B}}(v_1, \dots, v_m) \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \sum_{k=1}^m x_k \operatorname{Coord}_{\mathscr{B}}(v_k)$$

$$\operatorname{Mat}_{\mathscr{B}}(v_1,\ldots,v_m) \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \operatorname{Coord}_{\mathscr{B}} \left(\sum_{k=1}^m x_k v_k \right)$$

Extrait de la feuille cours_3_2.

Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $X \in \mathcal{M}_{p,1}(\mathbb{R})$.

$$AX = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=1}^p a_{1,j}x_j \\ \vdots \\ \sum_{j=1}^p a_{n,j}x_j \end{pmatrix}$$

$$= \sum_{j=1}^p \begin{pmatrix} a_{1,j}x_j \\ \vdots \\ a_{n,j}x_j \end{pmatrix}$$

$$= \sum_{j=1}^p x_j \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$$

AX est une combinaison linéaire des colonnes de A

Dimension d'un espace vectoriel

7.1 Définition.

Théorème et définition

Soit E un espace vectoriel de dimension finie différent de $\{0_E\}$.

- \bullet E possède au moins une base.
- ${\bf 2}$ toutes les bases de E ont le même nombre de vecteurs.
- $oldsymbol{0}$ Le nombre de vecteurs d'une base de E est appelée dimension de E. on note $\dim(E)$ la dimension de E.

Remarques: L'espace vectoriel $\{0_E\}$ a par convention une dimension nulle. dim $(\{0_E\}) = 0$.

(Sa base est la famille vide)

Théorème.

Soient E un espace vectoriel de dimension finie et $(u_1, ..., u_p)$ une famille de p vecteurs de E. Si $(u_1, ..., u_p)$ est libre alors $p \leq \dim(E)$.

Démonstration:

Soit $(u_1,...,u_p)$ une famille libre de vecteurs d'un espace vectoriel E de dimension n.

(On note \mathcal{B} une base de E)

on a donc : (définition de la liberté)

$$\forall (x_1, \dots, x_p) \in \mathbb{K}^p, \quad \sum_{k=1}^p x_k u_k = 0_E \iff (x_1, \dots, x_p) = (0, \dots, 0)$$

ce qui donne dans la base \mathscr{B} : en notant $M=\mathrm{Mat}_{\mathscr{B}}(u_1,\ldots u_p)$

$$\forall (x_1, \dots, x_p) \in \mathbb{K}^p, \quad M \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \iff (x_1, \dots, x_p) = (0, \dots, 0)$$

donc le système MX=0 a une unique solution et ainsi il a autant ou plus d'équations que d'inconnues.

(on utilise ici le lemme précédent)

autrement dit
$$p \leq n$$
.

Corollaire

Si pour tout $n \in \mathbb{N}^*$, s'il existe une famille libre de n vecteurs de E alors E n'est pas de dimension finie.

Exemples:

Pour tout $n \in \mathbb{N}^*$, la famille $(x \longmapsto x^k)_{1 < k \leqslant n}$ est une famille libre de n vecteurs de $\mathbb{R}^{\mathbb{R}}$ donc

$$\mathbb{R}^{\mathbb{R}}$$
 n'est pas de dimension finie

Pour tout $n \in \mathbb{N}^*$, la famille $(X^k)_{1 \leqslant k \leqslant n}$ est une famille libre de n vecteurs de $\mathbb{R}[X]$ donc

$$\mathbb{R}[X]$$
 n'est pas de dimension finie

.

7.2 Dans une famille libre chaque vecteur donne une nouvelle direction.

Théorème

Soient E un espace vectoriel et $(u_1, ...u_n, v)$ des vecteurs de E. $(u_1, ..., u_n)$ est libre et si $v \notin \text{Vect} < u_1, ..., u_n > \text{ si, et seulement si, } (u_1, ..., u_n, v)$ est libre

Démonstration:

Remarques:

- On retrouve qu'une sous-famille d'une famille libre est libre.
- _

Corollaire

```
Soient E un espace vectoriel et (u_1, ... u_n) une famille de n vecteurs de E.

u_1 \neq 0_E et \forall k \in [1, n-1], \ u_{k+1} \notin \text{Vect} < u_1, ..., u_k > \text{ si, et seulement si, } (u_1, ..., u_n) \text{ est libre}
```

En effet.

Remarque:

On peut avec ce corollaire démontrer un théorème vu plus haut dans ce cours :

7.3 Compléter une famille libre ou extraire d'une famille génératrice.

Théorème.

Soit E un espace vectoriel de dimension finie.

- lacktriangle De toute famille génératrice de E on peut extraire une base de E.
- $\mathbf{2}$ Toute famille libre de E peut être complétée en une base de E.

Remarques : • Une famille génératrice d'un sous-espace vectoriel de dimension n a au moins n vecteurs.

ullet Une famille libre d'un sous-espace vectoriel de dimension n a au plus n vecteurs.

Démonstration :

Famille libre, famille génératrice et dimension.

n désigne ici un entier naturel non nul.

8.1 Famille génératrice en dimension n.

Théorème:

Soit E un espace vectoriel de dimension finie et différent de $\{0_E\}$. Si E est dimension n, toute famille génératrice de E formée de n vecteurs est une base de E.

Rédaction type : On a montré que
$$\begin{cases} \mathscr{F} \text{ est génératrice de } E \\ \mathscr{F} \text{ contient } n \text{ vecteurs} \\ \dim(E) = n \end{cases}$$
 donc $\mathscr{F} \text{ est une base de } E.$

En effet.

8.2 Famille libre en dimension n.

Théorème:

Soit E un espace vectoriel de dimension finie et différent de $\{0_E\}$. Si E est dimension n, toute famille libre de E formée de n vecteurs est une base de E.

Rédaction type : On a montré que $\begin{cases} \mathscr{F} \text{ est une famille libre} \\ \mathscr{F} \text{ contient } n \text{ vecteurs de } E & \text{donc} & \mathscr{F} \text{ est une base de } E. \\ \dim(E) = n \end{cases}$

En effet.

8.3 Dimension et sous-espace vectoriel.

Proposition.

Soit E un espace vectoriel et F une partie de E,

Si F est un sous-espace vectoriel de E et E est de dimension finie alors F est de dimension finie.

Démonstration:

Théorème:

Soit E un espace vectoriel de dimension finie,

et soient F et G deux sous-espaces vectoriels de E,

① Si
$$F \subset G$$
 alors $\dim(F) \leq \dim(G)$

Démonstration.

Systèmes linéaires homogènes et dimension.

Soit M une matrice de $\mathcal{M}_{p,n}(\mathbb{K})$, on s'intéresse ici à la résolution du système linéaire MX=0.

p équations et n inconnues.

Rappels:

L'algorithme du pivot de Gauss permet de réduire le système MX = 0 en un système échelonné TX = 0. Le nombre de lignes non nuls de TX = 0 est égal au nombre d'inconnues principales noté r.

Le nombre d'inconnues secondaires vaut n-r.

(C'est le rang du système)

Théorème.

L'ensemble des solutions du système MX = 0 est un sous-espace vectoriel de dimension n - r.

Démonstration:

Conseil général : N'utilisez ce théorème uniquement si vous êtes sûr de vous et que cela est nécessaire.

Théorème.

S'il y a strictement plus d'inconnues que d'équations (n>p) alors le système MX=0 a une infinité de solutions. Si (0,...,0) est l'unique solution de MX=0, alors il y a autant ou plus d'équations que d'inconnues $(n\leqslant p)$.

Illustration sur un exemple : Extrait de la feuille_calcul_4

Soit $u = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$,

$$u \in F \iff \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 &= 0 \\ 2x_1 + 4x_2 + x_3 & + 5x_5 &= 0 \\ x_3 + x_4 + x_5 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 &= 0 \\ -5x_3 - 8x_4 - 5x_5 &= 0 \\ x_3 + x_4 + x_5 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 &= 0 \\ -5x_3 - 8x_4 - 5x_5 &= 0 \\ -5x_3 - 8x_4 - 5x_5 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 &= 0 \\ -5x_3 - 8x_4 - 5x_5 &= 0 \\ -3x_4 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 = -2x_2 - 2x_5 \\ x_3 = -x_5 \\ x_4 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 = -2x_2 - 2x_5 \\ x_3 = -x_5 \\ x_4 &= 0 \end{cases}$$

donc
$$F = \{(-2x_2 - 2x_5, x_2, -x_5, 0, x_5) \mid (x_2, x_5) \in \mathbb{R}^2 \}$$

= $\{x_2(-2, 1, 0, 0, 0) + x_5(-2, 0, -1, 0, 1) \mid (x_2, x_5) \in \mathbb{R}^2 \}$

Donc F = Vect < (-2, 1, 0, 0, 0), (2, 0, -1, 0, 1) > et ((-2, 1, 0, 0, 0), (-2, 0, -1, 0, 1)) est libre.

F est un sous-espace vectoriel et ((-2,1,0,0,0),(-2,0,-1,0,1)) est une base de F.

Remarque: cet espace est de dimension 2, mais il est infini (l'ensemble des solutions est infini)

Rangs.

10.1 Rang d'une famille de vecteurs.

Soient E un espace vectoriel et n un entier naturel non nul.

Définition.

Pour $(u_1,...,u_n)$ une famille de n vecteurs de E.

$$\operatorname{rg}(u_1, u_2, \dots, u_n) = \dim (\operatorname{Vect}(u_1, u_2, \dots, u_n))$$

Remarque : On ne change pas le rang en faisant des opérations élémentaires sur les vecteurs.

Théorèmes :

Soit ${\mathscr F}$ une famille de vecteurs de E

- $oldsymbol{0}$ rg (\mathscr{F}) est égal au nombre de vecteurs de \mathscr{F} . si, et seulement si, \mathscr{F} est libre
- ${\bf 2} \quad \operatorname{rg} \left({\mathcal F} \right)$ est égal à $\dim(E).\quad$ si, et seulement si, ${\mathcal F}$ est génératrice de E.

Démonstration.

10.2 Rang d'une matrice.

Définition. (Définition du rang d'une matrice)

Soit M une matrice de $\mathcal{M}_{n,m}(\mathbb{K})$,

On appelle rang de la matrice M, la dimension de l'espace engendré par les colonnes de M.

Notation : on note rg(M) le rang de la matrice M.

Théorèmes:

- Pour toute matrice M de $\mathcal{M}_{n,m}(\mathbb{K})$, $\operatorname{rg}(M^{\top}) = \operatorname{rg}(M)$.
- **2** Pour toute matrice M de $\mathcal{M}_n(\mathbb{K})$, $\operatorname{rg}(M) = n$ si, et seulement si, M est inversible.

Démonstration.

Remarques:

- Le rang d'une matrice est (aussi) la dimension de l'espace engendré par ses lignes.
- On ne modifie pas le rang d'une matrice en faisant des opérations élémentaires sur ses colonnes et ses lignes.
- Si $M \in \mathcal{M}_{n,p}(\mathbb{K})$ alors $\operatorname{rg}(M) \leqslant n$ et $\operatorname{rg}(M) \leqslant p$ (ou encore $\operatorname{rg}(M) \leqslant \min(n,p)$)
- On obtient ce rang en appliquant l'algorithme de Gauss sur les lignes ou sur les colonnes de la matrice.

10.3 Matrices et familles de vecteurs.

Soit E un espace vectoriel de dimension finie.

Proposition.

Soient
$$(u_1, u_2, ..., u_n)$$
 une famille de vecteurs de E et \mathscr{B} une base de E .
$$\operatorname{rg}(u_1, u_2, ..., u_n) = \operatorname{rg}\left(\operatorname{Mat}_{\mathscr{B}}\left(u_1, u_2, ..., u_n\right)\right)$$

Démonstration:

Théorèmes.

Soient (u_1, u_2, \dots, u_n) une famille de vecteurs de E et \mathscr{B} une base de E. On note $M = \operatorname{Mat}_{\mathscr{B}}(u_1, u_2, \dots, u_n)$

- \bullet (u_1, u_2, \dots, u_n) est libre si, et seulement si, rg(M) = n
- $\mathbf{Q}(u_1, u_2, \dots, u_n)$ est génératrice si, et seulement si, $\operatorname{rg}(M) = \dim(E)$
- \bullet (u_1, u_2, \ldots, u_n) est une base de E si, et seulement si, M est inversible.

Démonstration:

10.4 Rang d'un système.

Définition:

Le rang d'un système est le nombre d'inconnues principales après réduction par l'algorithme du pivot de Gauss.

Proposition:

Soient
$$M \in \mathcal{M}_{n,m}(\mathbb{K}), B \in \mathcal{M}_{n,1}(\mathbb{K})$$
 et Σ le système $MX = B$
$$\operatorname{rg}(M) = \operatorname{rg}(\Sigma)$$