Généralités.

Dans ce chapitre n, r, q et p sont des entiers naturels **non nuls**, Les éléments de $\mathbb{K} = \mathbb{R}$ ou de \mathbb{C} sont appelés **nombres** ou **scalaires**.

1.1 Généralités.

Définition:

Une matrice de taille (n, p) est un **tableau rectangulaire de nombres** comportant n lignes et p colonnes. Ces nombres sont appelés coefficients de la matrice.

Notation :
$$A = (a_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket}$$
 ou $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$

On notera ici $(A)_{i,j}$ le **coefficient** de A se trouvant à la i-ème ligne et à la j-ième colonne

On note : $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices $n \times p$, et $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices carrées $n \times n$.

1.2 Des cas particuliers.

- Si n = 1, on dit que la matrice A est une matrice ligne.
- Si p = 1, on dit que la matrice A est une matrice colonne.
- Pour A une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ on appelle :
 - $-i^{\text{ième}}$ ligne de A est la matrice ligne $(a_{i,1}\ a_{i,2}\ \dots\ a_{i,p}).$
 - $-j^{\text{ième}}$ colonne de A est la matrice colonne $\left(\begin{array}{c}a_{1,j}\\ \vdots\\ a_{n,j}\end{array}\right).$
- La matrice nulle à n lignes et p colonnes est la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ avec que des coefficients nuls.
- Si n = p, on dit que la matrice A est une matrice carrée.
- Lorsque A est une matrice carrée, on dit qu'elle est :
 - triangulaire supérieure lorsque $\forall (i,j) \in [1,n]^2, i > j \Rightarrow a_{i,j} = 0,$
 - triangulaire inférieure lorsque $\forall (i,j) \in [\![1,n]\!]^2, \quad i < j \Rightarrow a_{i,j} = 0,$
 - **diagonale** lorsque $\forall (i,j) \in [1,n]^2$, $i \neq j \Rightarrow a_{i,j} = 0$,
- La matrice identité de dimension n (nécessairement une matrice carrée) notée I_n est la matrice de $\mathcal{M}_n(\mathbb{K})$:

$$\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)$$

Opérations.

2.1 Combinaisons linéaires de matrices.

2.1.1Combinaison linéaire.

Définition:

Soient $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ et $B = (b_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$ et α , β deux scalaires.

La matrice $\alpha A + \beta B$ est la matrice $(\alpha a_{i,j} + \beta b_{i,j})_{1 \leq i \leq n}$

2.1.2Propriétés.

Soit A, B et C trois matrices de même taille, k et k' deux scalaires, on a alors :

- 1. (A+B) + C = A + (B+C)
- 2. A + 0 = 0 + A = A
- (0 matrice nulle de même taille que A)
- 3. A + (-A) = (-A) + A = 0
- (où -A est la matrice (-1)A)

- 4. A + B = B + A
- 5. k(A + B) = kA + kB
- 6. (k + k')A = kA + k'A
- 7. (kk')A = k(k'A)
- 8. 0A = 0
- 9. 1A = A

2.2Produit de deux matrices.

2.2.1Définition.

Définition:

et $B = (b_{i,j})_{\substack{1 \leqslant i \leqslant q \\ 1 \leqslant j \leqslant r}}$ Soient $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}}$

le produit AB est la matrice $C = (c_{i,j}) \underset{1 \leqslant j \leqslant r}{\underset{1 \leqslant j \leqslant r}{\leq i}} \text{ avec}: \forall (i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,r \rrbracket \qquad c_{i,j} = \sum_{k=1}^q a_{i,k} b_{k,j}$

Propriétés. 2.2.2

Propriétés

- Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{K})$: $AI_q = I_p A = A$
- Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $(B, B') \in M_{q,r}(\mathbb{K})^2$: A(B+B') = AB + AB'
- Pour tout $(A, A') \in \mathcal{M}_{p,q}(\mathbb{K})^2$, $B \in \mathcal{M}_{q,r}(\mathbb{K})$: (A + A')B = AB + A'B
- Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{K}), B \in \mathcal{M}_{q,r}(\mathbb{K})$ et pour tout $\alpha \in \mathbb{K}$: $(\alpha A)B = \alpha(AB) = A(\alpha B)$
- Pour tout $A \in \mathcal{M}_{p,q}(\mathbb{K}), B \in \mathcal{M}_{q,r}(\mathbb{K})$ et $C \in \mathcal{M}_{r,s}(\mathbb{K})$ on a : A(BC) = (AB)C

2.2.3 Loi non commutative, non intègre.

- Il existe des matrices A et B telles que $AB \neq BA$.

(On dit que la multiplication des matrices carrés n'est pas une loi commutative).

- L'égalité AB=0 n'entraı̂ne pas nécessairement A=0 ou B=0

(On dit que la multiplication n'est pas une loi intègre)

En revanche les deux propositions sont vraies.

Propositions:

- **•** Pour tout $k \in \mathbb{R}$ et tout $A \in \mathcal{M}_{n,p}(\mathbb{K})$, kA = 0 équivaut à k = 0 ou A = 0.
- **9** Pour tout $A \in \mathcal{M}_{n,p}(\mathbb{K})$, si $(\forall X \in \mathcal{M}_{p,1}(\mathbb{K}), AX = 0)$ alors A = 0

2.2.4 Cas particuliers.

- Avec les matrices nulles : $\forall A \in \mathcal{M}_{p,n}(\mathbb{K}), \quad A \, 0_{n,r} = 0_{p,r} \text{ et } 0_{r,p} \, A = 0_{r,n}.$
- Avec les matrices identités : $\forall A \in \mathcal{M}_{p,n}(\mathbb{K}), \quad A I_n = A \text{ et } I_p A = A.$
- Produit d'une matrice et d'une matrice colonne.

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \underbrace{x_1 \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{p,1} \end{pmatrix}}_{} + \underbrace{x_2 \begin{pmatrix} a_{1,2} \\ a_{2,2} \\ \vdots \\ a_{p,2} \end{pmatrix}}_{} + \cdots + \underbrace{x_n \begin{pmatrix} a_{1,n} \\ a_{2,n} \\ \vdots \\ a_{p,n} \end{pmatrix}}_{}$$

Combinaison linéaire des colonnes de A

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n \\ \vdots & \vdots \\ a_{p,1}x_1 + a_{p,2}x_2 + \cdots + a_{p,n}x_n \end{pmatrix}$$

• Produit d'une matrice et d'une matrice ligne.

• Produit d'une matrice colonne et d'une matrice ligne.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 & y_2 & \cdots & y_p \end{pmatrix} = \begin{pmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_p \\ x_2y_1 & x_2y_2 & \cdots & x_2y_p \\ \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & x_ny_2 & \cdots & x_ny_p \end{pmatrix}$$

• Produit d'une matrice ligne et d'une matrice colonne.

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n x_k y_k \end{pmatrix}$$

3

Remarque: Nous reverrons ce genre de produit dans le cours sur le produit scalaire dans \mathbb{R}^n .

• Produit d'une matrice par une matrice diagonale.

A droite:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 a_{1,1} & \lambda_2 a_{1,2} & \cdots & \lambda_n a_{1,n} \\ \lambda_1 a_{2,1} & \lambda_2 a_{2,2} & \cdots & \lambda_n a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1 a_{p,1} & \lambda_2 a_{p,2} & \cdots & \lambda_n a_{p,n} \end{pmatrix}$$

Multiplier à droite par une matrice diagonale, revient à multiplier les colonnes C_i de A par λ_i .

A gauche:

$$\begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_{n} \end{pmatrix} \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} = \begin{pmatrix} \lambda_{1}a_{1,1} & \lambda_{1}a_{1,2} & \cdots & \lambda_{1}a_{1,n} \\ \lambda_{2}a_{2,1} & \lambda_{2}a_{2,2} & \cdots & \lambda_{2}a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{p}a_{p,1} & \lambda_{p}a_{p,2} & \cdots & \lambda_{p}a_{p,n} \end{pmatrix}$$

Multiplier à gauche par une matrice diagonale, revient à multiplier les lignes L_i de A par λ_i .

• Produit de deux matrices diagonales.

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \begin{pmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \mu_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \mu_n \end{pmatrix}$$

• Produit de deux matrices triangulaires.

Proposition:

Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.

$$\begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \begin{pmatrix} \mu_1 & * & \cdots & * \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \mu_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \mu_1 & * & \cdots & * \\ 0 & \lambda_2 \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_n \mu_n \end{pmatrix}$$

Démonstration. (bon exercice)

Remarque: On peut énoncer le même résultat pour les matrices triangulaires inférieures.

2.3 Lignes et colonnes de AB. (Complément)

• Si on note C_j les colonnes de B alors la $j^{\text{ième}}$ colonne de AB est AC_j :

$$A\underbrace{\left(C_1 \mid C_2 \mid \cdots \mid C_q\right)}_{R} = \underbrace{\left(AC_1 \mid AC_2 \mid \cdots \mid AC_q\right)}_{AR}$$

 ${f Cons\'equence}$: Les colonnes de AB sont des combinaisons linéaires des colonnes de A.

• Si on note L_i les lignes de A alors la $i^{\text{ième}}$ ligne de AB est L_iB :

$$\begin{pmatrix}
L_1 \\
L_2 \\
\vdots \\
L_p
\end{pmatrix} B = \begin{pmatrix}
L_1 B \\
L_2 B \\
\vdots \\
L_p B
\end{pmatrix}$$

4

Conséquence : Les lignes de AB sont des combinaisons linéaires des lignes de B.

2.4 Puissance d'une matrice carrée.

2.4.1 Définition.

Soit A une matrice de $\mathcal{M}_p(\mathbb{K})$

$$A^0 = I_p \quad \forall n \in \mathbb{N}, \quad A^{n+1} = A \times A^n \quad (\text{ou} = A^n \times A)$$

2.4.2 Cas particuliers.

• Puissance de I_p (la matrice identité) et de O_p (la matrice nulle).

$$\forall n \in \mathbb{N}, \quad I_p^n = I_p \qquad O_p^0 = I_p \qquad \forall n \in \mathbb{N}^*, \quad O_p^n = O_p$$

• Matrices diagonales.

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_p \end{pmatrix}^n = \begin{pmatrix} \lambda_1^n & 0 & \cdots & 0 \\ 0 & \lambda_2^n & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_p^n \end{pmatrix}$$

• Matrices triangulaires.

$$\forall n \in \mathbb{N}, \quad \begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_p \end{pmatrix}^n = \begin{pmatrix} \lambda_1^n & * & \cdots & * \\ 0 & \lambda_2^n & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_p^n \end{pmatrix}$$

2.4.3 Formule du binôme.

Théorème Formule du binôme.

Soit $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$ deux matrices carrées telles que AB = BA

(On dit que A et B commutent).

pour tout $n \in \mathbb{N}$

$$(A+B)^{n} = \sum_{k=0}^{n} \binom{n}{k} A^{k} B^{n-k} \qquad (A+B)^{n} = \sum_{k=0}^{n} \binom{n}{k} A^{n-k} B^{k}$$

2.4.4 Formule de Bernoulli.

Théorème | Formule de Bernoulli.

Soit $A\in \mathscr{M}_p(\mathbb{K})$ et $B\in \mathscr{M}_p(\mathbb{K})$ deux matrices carrées telles que AB=BA

pour tout $n \in \mathbb{N}$

$$A^{n+1} - B^{n+1} = (A - B) \sum_{k=0}^{n} A^k B^{n-k}$$

$$A^{n+1} - B^{n+1} = (A - B) \sum_{k=0}^{n} A^{n-k} B^k$$

Matrice inversible.

Dans ce paragraphe toutes les matrices sont carrées.

3.1 Définition.

Définitions

Soit A une matrice de $\mathcal{M}_n(\mathbb{K})$ (une matrice carrée)

Dire que A est inversible signifie qu'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$AB = BA = I_n$$
 (où I_n est la matrice identité)

La matrice B est alors unique et est appelée inverse de la matrice A on la note A^{-1}

3.2Matrice inversible et systèmes.

Théorème.

Soit $A \in \mathscr{M}_n(\mathbb{K})$,

Les propositions suivantes sont équivalentes :

- \bullet A est inversible
- **2** Le système AX = 0 admet une unique solution.
- **3** quel que soit $Y \in \mathcal{M}_{n,1}(\mathbb{K})$, le système AX = Y admet une unique solution.

3.2.1 Résoudre un système pour trouver l'inverse.

En pratique:

On prend un second membre quelconque Y et on résout le système AX = Y.

si on montre qu'il n'a qu'une solution, A est inversible sinon elle ne l'est pas.

Si on montre que l'unique solution s'exprime X = MY avec M une matrice $\mathcal{M}_n(\mathbb{K})$ alors $M = A^{-1}$

Inverse d'un produit. 3.3

Théorème :

Soient M et N deux matrices carrées de $\mathcal{M}_n(\mathbb{K})$,

Si M et N sont inversibles alors, le produit MN est inversible et $(MN)^{-1} = N^{-1}M^{-1}$

Propositions Généralisation.

① Soient A_1, A_2, \ldots, A_p , p matrices de $\mathcal{M}_n(\mathbb{K})$,

Soient A_1, A_2, \dots, A_p , p interface G. As A_1, A_2, \dots, A_p and A_1, A_2, \dots, A_p est inversible et A_1, A_2, \dots, A_p est inversible et $(A_1, A_2, \dots, A_p)^{-1} = A_p^{-1} A_{p-1}^{-1} \dots A_1^{-1}$

et
$$(A_1 A_2 \cdots A_n)^{-1} = A^{-1} A^{-1} \cdots A_n^{-1}$$

② Soit p un entier naturel et A une matrice de $\mathcal{M}_n(\mathbb{K})$,

 A^p est inversible et $(A^p)^{-1} = (A^{-1})^p$ (noté A^{-p}) ${f Si}\ A$ est inversible , alors

3.4 Cas particuliers.

3.4.1 Matrice diagonale.

Matrices diagonales.

Soient
$$(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$$
 et $A = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$

 $\forall i \in [1, n], \ \alpha_i \neq 0$ si, et seulement si, A est inversible.

et alors
$$A^{-1} = \operatorname{diag}\left(\frac{1}{\alpha_1}, \dots, \frac{1}{\alpha_n}\right)$$

Démonstration :

Remarque : on retrouve que la matrice identité est inversible et $I_n^{-1} = I_n$.

3.4.2 Matrice triangulaire.

Théorème :

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure,

T est inversible si, et seulement si, les coefficients diagonaux de T sont tous non nuls.

et alors T^{-1} est une matrice triangulaire supérieure.

Remarque: Si T est inversible alors les coefficients diagonaux de T^{-1} sont les inverses de ceux de T.

Démonstration.

3.4.3 Les matrices 2×2 . Déterminant.

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

A est inversible si, et seulement si, $ad - bc \neq 0$.

et sous cette condition:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Démonstration.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Définition : (uniquement pour les matrices 2×2)

On appelle déterminant de la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, le nombre : ad - bc.

On note :
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$
 ou $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

7

Matrice transposée.

4.1 Définition.

Définition

Soit A une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$,

on appelle **transposée** de A la matrice B de $\mathcal{M}_{p,n}(\mathbb{K})$ (notée ${}^t\!A$ ou A^\intercal) telle que :

$$\forall (i,j) \in [1;p] \times [1;n] \quad b_{i,j} = a_{j,i}$$

4.2 Propriétés.

Proposition:

Soient \overline{A} et \overline{B} deux matrices et un scalaire k alors :

 $(kA)^{\top} = k A^{\top}$

 $(A+B)^{\top} = A^{\top} + B^{\top}$

Si A et B sont de mêmes tailles

 $(AB)^\top = B^\top A^\top$

Si le produit AB est définie

4.3 Inverse et transposée.

Théorème : Transposée de l'inverse d'une matrice

Soit A une matrice carrée,

A est inversible **si, et seulement, si** A^{\top} est inversible et alors $(A^{\top})^{-1} = (A^{-1})^{\top}$

4.4 Matrices symétriques, antisymétriques.

Définitions:

Soit A une matrice carrée,

A est **symétrique**, signifie que $A^{\top} = A$

A est antisymétrique, signifie que $A^{\top} = -A$

Proposition:

Soit A une matrice carrée, si A est inversible et symétrique alors A^{-1} est symétrique.

 $\mathbf{Un\ exercice:}\ (\textit{exemple ultra-classique d'analyse-synth}\grave{e}se)$

Montrer que :

Toute matrice carrée peut s'écrire comme somme d'une matrice symétrique et d'une matrice antisymétrique.