
1
Equations différentielles homogènes.

Soit I un intervalle de R (non trivial), on note Dk(I) l’espace vectoriel des fonctions k fois dérivables sur I.

• Equations différentielles linéaire homogènes d’ordre 1 sous forme résolue.

Soit a une fonction continue sur I, on note (E0) l’équation différentielle y′ + a(t)y = 0.

Définition :

l’ensemble des solutions de (E0) sur I est :

S(E0) =
{
f ∈ D1(I) | ∀t ∈ I, f ′(t) + a(t)f(t) = 0

}
Proposition.

L’ensemble des solutions sur I de l’équation (E0) est sous espace vectoriel de D1(I).

Démonstration :

Théorème.

On note A une primitive quelconque de a sur I,
l’ensemble des solutions de l’équation (E0) sur I est :

S(E0) =

{
I −→ R
t 7−→ ke−A(t)

∣∣∣∣∣ k ∈ R

}

Démonstration :

Soit f une fonction dérivable sur I, on note g : t 7−→ eA(t)f(t),

f ∈ S(E0) ⇐⇒ ∀t ∈ I, f ′(t) + a(t)f(t) = 0

⇐⇒ ∀t ∈ I, eA(t)f ′(t) + a(t)eA(t)f(t) = 0 car eA(t) ̸= 0

⇐⇒ ∀t ∈ I, g′(t) = 0

⇐⇒ ∃k ∈ R, ∀t ∈ I, g(t) = k car I est un intervalle

⇐⇒ ∃k ∈ R, ∀t ∈ I, eA(t)f(t) = k

⇐⇒ ∃k ∈ R, ∀t ∈ I, f(t) = ke−A(t) car e−A(t) ̸= 0

■

Proposition : S(E0) =Vect (t 7−→ e−A(t)), dim(S(E0)) = 1 et S(E0) ⊂ C1(I)

Remarques :

• Si f est une solution non nulle de (E0) alors S(E0) =Vect< f >

• Les solutions non nulles de (E0) ne s’annulent pas sur I.

• Si une solution de (E0) s’annule alors c’est la fonction nulle.
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• Equations différentielles linéaires homogènes d’ordre 2 à coefficients constants.

Soient a, b et c trois réels tels que a ̸= 0, on note (E0) l’équation différentielle :

(E0) : ay
′′ + by′ + cy = 0

Définition :

l’ensemble des solutions de (E0) sur I est :

S(E0) =
{
f ∈ D2(I) | ∀t ∈ I, af ′′(t) + bf ′(t) + cf(t) = 0

}
Proposition.

L’ensemble des solutions sur I de l’équation (E0) est sous espace vectoriel de D2(I).

Théorème

On distingue trois cas :

➊ si ax2 + bx+ c = 0 a deux racines réelles distinctes r1 et r2,

alors l’ensemble des solutions de l’équation (E0) sur I est :

S(E0) =

{
I −→ R
t 7−→ k1 e

r1t + k2 e
r2t

∣∣∣∣ (k1, k2) ∈ R2

}

S(E0) = Vect(t 7−→ er1t , t 7−→ er2t)

➋ si ax2 + bx+ c = 0 a une racine réelle double r0,

alors l’ensemble des solutions de l’équation (E0) sur I est :

S(E0) =

{
I −→ R
t 7−→ k1 e

r0t + k2 t e
r0t

∣∣∣∣ (k1, k2) ∈ R2

}

S(E0) = Vect(t 7−→ er0t , t 7−→ ter0t)

➌ si ax2 + bx+ c = 0 a deux racines complexes conjuguées α+ iω et α+ iω,

alors l’ensemble des solutions de l’équation (E0) sur I est :

S(E0) =

{
I −→ R
t 7−→ k1 cos(ωt) eαt + k2 sin(ωt) eαt

∣∣∣∣ (k1, k2) ∈ R2

}

S(E0) = Vect(t 7−→ cos(ωt) eαt , t 7−→ sin(ωt) eαt)

Proposition :

Dans tous les cas : dim(S(E0)) = 2 et S(E0) ⊂ C∞(I)

Remarques.

- On pourra sauf indication contraire utiliser les résultats suivants :

• Si r1 ̸= r2 alors (t 7−→ er1t , t 7−→ er2t) est une famille libre.

• pour tout réel r0, (t 7−→ er0t , t 7−→ ter0t) est une famille libre.

• Si ω ̸= 0 alors (t 7−→ cos(ωt) eαt , t 7−→ sin(ωt) eαt) est une famille libre.

- Dans le cas ➌ on peut aussi écrire les solutions sous la forme : t 7−→ Aeαt cos(ωt+ φ)
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2
Equation avec second membre.

Soit φ une fonction définie sur un intervalle I.

2.1 Première ordre.

Soit a une fonction continue sur I, on note :

(E) : y′ + a(t)y = φ(t) et (E0) : y
′ + a(t)y = 0

Définition :

l’ensemble des solutions de (E) sur I est :

S(E) =
{
f ∈ D1(I) | ∀t ∈ I, f ′(t) + a(t)f(t) = φ(t)

}
Théorème :

Si g est une solution (particulière) de (E) sur I alors

l’ensemble des solutions de l’équation (E) sur I est : S(E) =

{
I −→ R
t 7−→ h(t) + g(t)

∣∣∣∣∣ h ∈ S(E0)

}
ou plus simplement : S(E) =

{
h+ g | h ∈ S(E0)

}
Démonstration :

On suppose que g est une solution de (E), (On sait que : ∀t ∈ I, g′(t) + a(t)g(t) = φ(t))

Soit f une fonction dérivable sur I,

f ∈ S(E) ⇐⇒ ∀t ∈ I, f ′(t) + a(t)f(t) = φ(t)

⇐⇒ ∀t ∈ I, f ′(t) + a(t)f(t) = g′(t) + a(t)g(t)

⇐⇒ ∀t ∈ I, (f − g)′(t) + a(t)(f − g)(t) = 0

⇐⇒ f − g ∈ SE0

⇐⇒ ∃h ∈ SE0 : f − g = h

⇐⇒ ∃h ∈ SE0 : f = h+ g

S(E) =
{
f ∈ D1(I) | ∃h ∈ S(E0) : f = g + h

}
ou encore S(E) =

{
h+ g | h ∈ S(E0)

}
■

Remarque :

Si A est une primitive de a sur I et g est une solution de (E) alors

S(E) =

{
I −→ R
t 7−→ ke−A(t) + g(t)

∣∣∣∣∣ k ∈ R

}
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2.2 Deuxième ordre à coefficients constants.

Soient a, b et c trois réels tels que a ̸= 0, on note :

(E) : ay′′ + by′ + cy = φ(t) et (E0) : ay
′′ + by′ + cy = 0

Définition :

l’ensemble des solutions de (E0) sur I est :

S(E) =
{
f ∈ D2(I) | ∀t ∈ I, af ′′(t) + bf ′(t) + cf(t) = φ(t)

}
Théorème :

Si g est une solution (particulière) de (E) sur I alors

l’ensemble des solutions de l’équation (E) sur I est : S(E) =

{
I −→ R
t 7−→ h(t) + g(t)

∣∣∣∣∣ h ∈ S(E0)

}
ou plus simplement : S(E) =

{
h+ g | h ∈ S(E0)

}
Démonstration :

On suppose que g est une solution de (E), (On sait que : ∀t ∈ I, ag′′(t) + b(t)g′(t) + cg(t) = φ(t) ).

Soit f une fonction deux fois dérivable sur I,

f ∈ S(E) ⇐⇒ ∀t ∈ I, af ′′(t) + b(t)f ′(t) + cf(t) = φ(t)

⇐⇒ ∀t ∈ I, af ′′(t) + b(t)f ′(t) + cf(t) = ag′′(t) + b(t)g′(t) + cg(t)

⇐⇒ ∀t ∈ I, a(f − g)′′(t) + b(f − g)′(t) + c(f − g)(t) = 0

⇐⇒ f − g ∈ SE0

⇐⇒ ∃h ∈ SE0
: f = h+ g

S(E) =
{
f ∈ D2(I) | ∃h ∈ S(E0) : f = g + h

}
ou encore S(E) =

{
h+ g | h ∈ S(E0)

}
■
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3
Principe de superposition.

3.1 Première ordre.

Proposition :

Soient a, φ1, φ2 trois fonctions continues sur I et deux réels α et β,

on considère trois équations différentielles :

(E1) : y
′ + a(t)y = φ1(t) (E2) : y

′ + a(t)y = φ2(t) (E) : y′ + a(t)y = αφ1(t) + βφ2(t)

Si g1 est une solution de (E1), g2 est une solution de (E2) alors αg1 + βg2 est une solution de (E).

Démonstration :

On suppose que : ∀t ∈ I, g′1(t) + a(t)g1(t) = φ1(t) et ∀t ∈ I, g′2(t) + a(t)g2(t) = φ2(t)

On a alors pour (α, β) ∈ R2 et t ∈ I,

(αg1 + βg2)
′(t) + a(t)(αg1 + βg2)(t) = α(g′1(t) + a(t)g1(t)) + β(g′2(t) + a(t)g2(t))

= αφ1(t) + βφ2(t)

donc αg1 + βg2 est solution de (E)

■
Ce principe permet de simplifier une équation différentielle (E) : y′ + a(t)y = αφ1(t) + βφ2(t) en commençant
par chercher une solution particulière des équations différentielles :

(E1) : y
′ + a(t)y = φ1(t) (E2) : y

′ + a(t)y = φ2(t)

3.2 Deuxième ordre.

Proposition :

Soient φ1, φ2 des fonctions définies sur l’intervalle I et α, β des réels,

On considère les équations différentielles : (E) : ay′′ + by′ + cy = αφ1(t) + βφ2(t),

(E1) : ay
′′ + by′ + cy = φ1(t) et (E2) : ay

′′ + by′ + cy = φ2(t)

Si g1 est une solution de (E1) sur I et g2 est une solution de (E2) sur I

alors α g1 + β g2 est une solution de (E) sur I

Démonstration :

Cette proposition permet de simplifier une équation différentielle (E) : ay′′ + by′ + cy = αφ1(t) + βφ2(t) en
commençant par chercher une solution particulière des équations différentielles :

(E1) : ay
′′ + by′ + cy = φ1(t) (E2) : ay

′′ + by′ + cy = φ2(t)
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4
Méthode de variation de la constante.

On ici s’intéresse aux équations différentielles de la forme : (E) : y′ + a(t) y = φ(t).
avec a et φ deux fonctions continues sur l’intervalle I.

Ces équations sont appelées équations différentielles linéaires résolues du premier ordre.

Théorème : (E) possède au moins une solution sur I

Démonstration : (Méthode de la variation de la constante)

En trois étapes :

➊ On commence par résoudre (E0), a est continue sur I, on note A une de ses primitives sur I :

S0 =

{
I −→ R
t 7−→ k exp (−A(t))

∣∣∣∣∣ k ∈ R

}

dans la suite, on pose f0(t) = exp (−A(t)) et ainsi : S0 =Vect(f0)

➋ On cherche une solution de (E) (on cherche une solution particulière)

Soit k une fonction dérivable sur I, on note : g : t 7→ k(t)× f0(t)

g ∈ SE ⇐⇒ ∀t ∈ I, g′(t) + a(t)g(t) = φ(t)

⇐⇒ ∀t ∈ I, k′(t) f0(t) + k(t) f ′
0(t) + a(t) k(t) f0(t) = φ(t)

⇐⇒ ∀t ∈ I, k′(t)f0(t) + k(t)
(
f ′
0(t) + a(t)f0(t)

)
︸ ︷︷ ︸

=0

= φ(t) car f0 ∈ SE0

⇐⇒ ∀t ∈ I, k′(t)f0(t) = φ(t)

⇐⇒ ∀t ∈ I, k′(t) = φ(t) exp (A(t))

donc en choisissant pour k une des primitives de t 7−→ φ(t) exp(A(t))
(cette primitive existe car cette fonction est continue sur I ),

on obtient bien g : t 7→ k(t)× exp(−A(t)) est une solution de (E). ■

➌ Connaissant les solutions de (E0) et une solution de (E) on peut conclure.

Exemples : Ex 6 de la feuille Act 13

Quand utilise-t-on cette méthode :

➀ Sur une équation différentielle du premier ordre y′ + a(t) y = φ(t).

➁ Quand l’énoncé ne donne pas la forme d’une solution particulière.

➂ Quand on ne trouve pas de solution en faisant : une conjecture sur la forme d’une solution suivie d’une
vérification par calcul.

Remarques :
- pour ➂ certains utilisent la phrase 1 : ”Chercher une solution sous la forme du second membre”

- pour ceux qui veulent aller plus loin ils peuvent étudier le chapitre 6 de ce cours.

1. cette phrase sert à guider la recherche en proposant une conjecture, sans constituer une méthode rigoureuse ni une preuve
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5
Condition initiale.

5.1 Premier ordre.

Soient I un intervalle, a : I → R et φ : I → R deux fonctions continues sur I,

on note (E) l’équation différentielle : y′ + a(t)y = φ(t)

Théorème :

Quel que soient t0, y0 deux nombres réels avec t0 ∈ I, il existe une et une seule solution f de (E) sur I vérifiant :

f(t0) = y0

Démonstration :

Soit f une solution de (E) et k ∈ R tel que f : t 7−→ k e−A(t) + g(t),

f(t0) = y0 ⇐⇒ k e−A(t0) + g(t0) = y0

⇐⇒ k e−A(t0) = y0 − g(t0)

⇐⇒ k = (y0 − g(t0))e
A(t0)

⇐⇒ f : t 7−→ (y0 − g(t0)) e
−(A(t)−A(t0)) + g(t)

■

5.2 Deuxième ordre.

Soient a, b et c trois réels tels que a ̸= 0, on note (E) : ay′′ + by′ + cy = φ(t)

On suppose ici que (E) possède au moins une solution sur I.

Théorème :

Soit t0, y0 et y1 trois nombres réels avec t0 ∈ I, il existe une et une seule solution f de (E) vérifiant :

f(t0) = y0 , f ′(t0) = y1

Démonstration :
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6
Recherche d’une solution particulière (Complément).

Ici on s’intéresse aux équations différentielles à coefficients constants.

Ces propriétés illustrent la phrase déjà citée dans ce cours (paragraphe 4) 1 :

”Chercher une solution sous la forme du second membre”

6.1 Second membre de la forme. t 7−→ cos(ωt) ou sin(ωt)

Première ordre. (a est un réel) (E) : y′ + ay = φ(t)

Si φ est de la forme t 7−→ cos(ωt) ou t 7−→ sin(ωt) ( ω un réel non nul).

on cherche une solution de (E) sous la forme t 7−→ λ cos(ωt) + µ sin(ωt)
où λ et µ sont deux réels à déterminer.

Exemples : y′ + 2y = cos(2t) y′(t)− 4y(t) = sin(4t)

Deuxième ordre.(a, b, c sont des réels)

(E) : ay′′ + by′ + cy = φ(t)

Si φ est de la forme t 7−→ cos(ωt) ou t 7−→ sin(ωt) ( ω un réel non nul).

on commence par chercher une solution du type t 7−→ λ cos(ωt) + µ sin(ωt)

et si on ne trouve pas on cherche sous la forme t 7−→ λ t cos(ωt) + µ t sin(ωt)
où λ et µ sont deux réels à déterminer.

Exemples : y′′ + y′ + y = sin(3t) y′′(t)− 3y′(t) + y(t) = cos
(
t
2

)
6.2 Second membre de la forme. t 7−→ P (t)emt

Première ordre. (a est un réel)

(E) : y′ + ay = φ(t)

Si φ est de la forme t 7−→ P (t)emt (m étant un réel et P un polynôme).

on cherche une solution de (E) sous la forme t 7−→ Q(t)emt, où Q un polynôme à déterminer.

Exemples : y′ + 2y = e3t y′(t)− 4y(t) = t3e−t

Deuxième ordre.(a, b, c sont des réels)

(E) : ay′′ + by′ + cy = φ(t)

Si φ est de la forme t 7−→ P (t)emt (m étant un réel et P un polynôme).

on cherche une solution sous la forme t 7−→ Q(t)emt, où Q un polynôme à déterminer.

Exemples : y′′ + y′ + y = e−4t y′′(t)− 3y′(t) + y(t) = te2t

1. On notera qu’on ne devrait l’utiliser que lorsque les coefficients sont constants, mais pour les équations d’ordre 1 ou 2
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