Equations différentielles homogenes.

Soit I un intervalle de R (non trivial), on note D*(I) I'espace vectoriel des fonctions k fois dérivables sur 1.
e Equations différentielles linéaire homogénes d’ordre 1 sous forme résolue.
Soit a une fonction continue sur I, on note (Ey) ’équation différentielle 3 + a(t)y = 0.

Définition :

lensemble des solutions de (Fy) sur I est :

Stz = {f € DMI) | W e T, f/(1)+a(®)f(t) =0 }

Proposition.

L’ensemble des solutions sur I de 1’équation (FEy) est sous espace vectoriel de Dy (I). ‘

Démonstration :

Théoréme.

On note A une primitive quelconque de a sur I,
I’ensemble des solutions de I’équation (Ey) sur I est :

_)I — R
wfim | e ]
Démonstration :
Soit f une fonction dérivable sur I, on note g : t — e f(2),
feSwy <= vtel, [f'(t)+a(t)f(t)=0

— vtel, 2O +at)eft)=0 car et® +£0

— Vtel, 4¢(t)=0

— JkeR, Vtel, gt)=k car [ est un intervalle

— 3JkeR, Vitel, *fi)=

— JkeR, Vtel, [f(t)=ke AW car e A £
Proposition : ’ S(By) =Vect (t — e~ AM), dim(S(g,)) =1 et Sigy C CH(I) ‘
Remarques :

e Si f est une solution non nulle de (Ep) alors S(g,) =Vect< f >
e Les solutions non nulles de (Ep) ne s’annulent pas sur I.

e Si une solution de (Fp) s’annule alors c’est la fonction nulle.



e Equations différentielles linéaires homogénes d’ordre 2 a coefficients constants.
Soient a, b et ¢ trois réels tels que a # 0, on note (Ey) I'équation différentielle :
(Eo) :ay” +by +cy=0

Définition :

Pensemble des solutions de (Ey) sur I est :

i) = {f € D2(I) |Vt € I, af’(t) + bf'(t) + cf(t) =0 }

Proposition.

L’ensemble des solutions sur I de I’équation (Ep) est sous espace vectoriel de Do (T).

Théoréme

On distingue trois cas :
O si ar?+bzr+c=0 adeux racines réelles distinctes r; et 7,

alors ’ensemble des solutions de ’équation (Ep) sur I est :

I — R 2
S(Eo) = {t — ky erit + ko erzt ’ (klak2) eR }

S(Ey) = Vect(t — et |t )
® si ar?+br+c=0 a une racine réelle double r,

alors I’ensemble des solutions de ’équation (Ey) sur I est :

I — R 2
S(EU) = {t — kl erot + the’rot ‘ (k17k2) c R }

S(By) = Vect(t — ™" | t — te™")

® si ar?+br+c=0 adeux racines complexes conjuguées o + iw et o + iw,

alors I’ensemble des solutions de ’équation (Ey) sur I est :

o I — R 2
St = {t — k1 cos(wt) e + ko sin(wt) e (k1 k2) € R }

S(,) = Vect(t — cos(wt) e** | t — sin(wt) e*)

Proposition :

Dans tous les cas :  dim(S(g,)) = 2 et Sigy C C®(I) ‘

Remarques.

- On pourra sauf indication contraire utiliser les résultats suivants :
o Siry#ry alors (t+—> et | t— e™!) est une famille libre.
e pour tout réel rg, (t — et |t te™?) est une famille libre.

o Siw#0 alors (t+—— cos(wt)e™ | t— sin(wt)e®) est une famille libre.

- Dans le cas ® on peut aussi écrire les solutions sous la forme : ¢ — Ae® cos(wt + )



Equation avec second membre.

Soit ¢ une fonction définie sur un intervalle 1.

2.1 Premieére ordre.
Soit a une fonction continue sur I, on note :
(E) : ¢ +alt)y=et) et (Eo) : 4/ +a(t)y =0

Définition :

Pensemble des solutions de (F) sur T est :

Sy = {F e DD [ VEE L F() +a®)f(t) = (1) }

Théoréme :

Si g est une solution (particuliére) de (E) sur I alors

I'ensemble des solutions de I'équation (E) sur [ est : Sgy = {i - h) % ) ‘ h € Sigy) }
— g

ou plus simplement : S(py = {h+g | h € S(gy) }

Démonstration :

On suppose que g est une solution de (E), (On sait que : Vt € I, ¢'(t) + a(t)g(t) = ¢(t))

Soit f une fonction dérivable sur I,

f€8wm veel, f(t)+at)f(t) = ()

vtel, f'(t)+a(t)f(t) =g'(t)+alt)g(t)
vtel, (f—g)®)+alt)(f—g)t)=0
J—9€ Sk,

JheSg,: f—-g=h

JheSg,: f=h+yg

rreeey

S(E)z{feDl(IHHheS(ED):f:g+h} ou encore S(E):{h+g|h€S(Eo)}

Remarque :

Si A est une primitive de a sur I et g est une solution de (E) alors

I — R
Sy = keR
) {t — ke~ 1 g(1) ' }



2.2 Deuxieme ordre a coefficients constants.
Soient a, b et ¢ trois réels tels que a # 0, on note :

(B) a0y +by +cy=9(t) et (Ep):ay’ +by +cy=0

Définition :

Pensemble des solutions de (Fy) sur I est :

Stmy = {F € DAD) | VEE L, af"(t) + b)) + e/ (1) = (1) }

Théoréme :

Si g est une solution (particuliére) de (E) sur I alors

I'ensemble des solutions de I'équation (E) sur I est : Sy = {i - ht) E ) ‘ h € S(gy) }
— g

ou plus simplement : S(py = {h+g | h € S(gy) }

Démonstration :
On suppose que g est une solution de (E), (On sait que : V&t € I, ag”(t) + b(t)g'(t) + cg(t) = (1) ).

Soit f une fonction deux fois dérivable sur I,

f €5 Vel af'(t)+b(t)f'(t) +cf(t) = o(t)
vtel, af'(t)+b(t)f'(t) +cf(t) = ag”(t) + b(t)g'(t) + cg(t)
vtel, a(f—g)"(t)+b(f—9)t)+c(f—9g)t)=0

[ —9€SE

JheSg,: f=h+yg

1reny

Spy={f€D?*(I)|3heSEy: f=g+h} ouencore S ={h+gl|heSnk,}



Principe de superposition.

3.1 Premiere ordre.

Proposition :

Soient a, 1, o trois fonctions continues sur I et deux réels « et 3,

on considere trois équations différentielles :
(E1) 9 +alt)y = ¢i(t) (E2) ' +a(t)y = pa(t) (B) ' +a(t)y = apr(t) + Bepa(t)

Si g est une solution de (F1), go est une solution de (Fs) alors ag; + Sg2 est une solution de (E).

Démonstration :
On suppose que : Vi € I, gi1(t) +a(t)g1(t) = p1(t) et Veel, gh(t)+a(t)ga(t) = @a(t)
On a alors pour (o, 8) e R et t € I,

(g1 + Bg2) (t) +a(t)(agi + Bg2)(t) = algy(t) +a(t)gi(t)) + Blga(t) + a(t)g2(t))
ap1(t) + Bepa(t)

donc ag; + g2 est solution de (F)

|
Ce principe permet de simplifier une équation différentielle (E) : ¢ + a(t)y = ap1(t) + Bp2(t) en commengant
par chercher une solution particuliere des équations différentielles :

(B1) sy +alt)y = ¢a(t) (E2) 1y +alt)y = palt)

3.2 Deuxieme ordre.

Proposition :

Soient @1, o des fonctions définies sur U'intervalle I et «, 3 des réels,
On considere les équations différentielles : (E):ay” + by + cy = ap1(t) + Bea(t),
(Ey) iay” +by' +cy=p1(t) et (E2):ay” +by +cy= pa(t)

Si g¢; est une solution de (E7) sur I et go est une solution de (Eq) sur

alors «g; + (g2 est une solution de (E) sur I

Démonstration :

Cette proposition permet de simplifier une équation différentielle (F) : ay” + by’ + cy = ap1(t) + Bya(t) en
commengant par chercher une solution particuliere des équations différentielles :

(Ey) :ay” + by +cy=p1(t) (E2) :ay” + by + cy = @a(t)



Méthode de variation de la constante.

On ici s’intéresse aux équations différentielles de la forme : (E) : y' + a(t) y = ¢(t).
avec a et ¢ deux fonctions continues sur 'intervalle I.

Ces équations sont appelées équations différentielles linéaires résolues du premier ordre.

Théoréme : [ (E) possede au moins une solution sur I |

Démonstration : (Méthode de la variation de la constante)

En trois étapes :

O On commence par résoudre (Ey), a est continue sur I, on note A une de ses primitives sur I :

) — R
SO_{t s kexp (—A(1)) ‘ kER}

dans la suite, on pose fo(t) = exp (—A(t)) et ainsi: Sy =Vect(fo)

0 On cherche une solution de (E) (on cherche une solution particuliére)

Soit k une fonction dérivable sur I, on note : g : t — k(t) x fo(t)
ge Sy <= Vtel, g'(t)+a(t)g(t)=e(t)
= Vtel, K(t)fo(t)+ k() f5(t) + ( ) E(t) fo(t) = (1)
— Vtel, K®)fot)+ k) (i) +alt) fO(t)) = o(t) car fo € Sg,
= el KOh=en)
— Vtel, K1) =) exp(A))

donc en choisissant pour k une des primitives de t — o(t) exp(A(t))
(cette primitive existe car cette fonction est continue sur I ),

on obtient bien ¢ : ¢+ k(t) x exp(—A(t)) est une solution de (E). |
® Connaissant les solutions de (Fy) et une solution de (E) on peut conclure.

Exemples : Ez 6 de la feuille_Act_13

Quand utilise-t-on cette méthode :
@ Sur une équation différentielle du premier ordre y' + a(t) y = ¢(t).
@ Quand I’énoncé ne donne pas la forme d’une solution particuliere.

® Quand on ne trouve pas de solution en faisant : une conjecture sur la forme d’une solution suivie d’une
vérification par calcul.

Remarques :
- pour @ certains utilisent la phraseﬂ : ”Chercher une solution sous la forme du second membre”

- pour ceux qui veulent aller plus loin ils peuvent étudier le chapitre 6 de ce cours.

1. cette phrase sert a guider la recherche en proposant une conjecture, sans constituer une méthode rigoureuse ni une preuve



Condition initiale.

5.1 Premier ordre.

Soient I un intervalle, a:I — R et ¢ :I — R deux fonctions continues sur I,

on note (E) l'équation différentielle : ¢ + a(t)y = (t)

Théoréeme :

Quel que soient tg, yo deux nombres réels avec tg € I, il existe une et une seule solution f de (F) sur I vérifiant :
f(to) = yo

Démonstration :

Soit f une solution de (E) et k € R tel que f:t — ke 4® + g(t),

flto) =y0 = ke ) 4 g(tg) = yo
= ke M) =y —g(to)
— k= (yo— g(to))eA(tO)
— f:it— (yo—g(to)) e~ (AN —A(to)) 4 g(t)

5.2 Deuxieme ordre.
Soient a, b et ¢ trois réels tels que a # 0, on note (E) : ay”’ + by’ + cy = ¢(t)
On suppose ici que (F) posseéde au moins une solution sur I.

Théoreme :
Soit tg, yo et y1 trois nombres réels avec tg € I, il existe une et une seule solution f de (F) vérifiant :

fto)=wo, [f'(to)=mn

Démonstration :




Recherche d’une solution particuliére (compiément).

Ici on s’intéresse aux équations différentielles a coefficients constants.

Ces propriétés illustrent la phrase déja citée dans ce cours (paragraphe / )E] :

” Chercher une solution sous la forme du second membre”

6.1 Second membre de la forme. t — cos(wt) ou sin(wt)
Premiére ordre. (a est un réel) (F):y' +ay = o(t)

Si ¢ est de la forme ¢ — cos(wt) ou ¢t — sin(wt) ( w un réel non nul).

on cherche une solution de (E) sous la forme ¢ +— Acos(wt) + psin(wt)
ou A et p sont deux réels a déterminer.

Exemples : ¢’ + 2y = cos(2t) y'(t) — 4y(t) = sin(4¢)
Deuxiéme ordre.(a,b, c sont des réels)

(E) :ay” + by + cy = ¢(t)

Si @ est de la forme ¢t — cos(wt) ou ¢t — sin(wt) ( w un réel non nul).
on commence par chercher une solution du type ¢ +—— Acos(wt) + psin(wt)

et si on ne trouve pas on cherche sous la forme ¢ +—— At cos(wt) + pt sin(wt)
ou A et p sont deux réels a déterminer.

Exemples : Yy +y 4y = sin(3t) Y (t) — 3y’ (t) + y(t) = cos ()

6.2 Second membre de la forme. t — P(t)e™

Premiére ordre. (a est un réel)

(E):y' +ay = (1)

Si ¢ est de la forme t — P(t)e™" (m étant un réel et P un polynome).

on cherche une solution de (E) sous la forme ¢+ Q(t)e™, ol @ un polynéme & déterminer.
Exemples : Yy + 2y = ¥ y'(t) — 4y(t) = t3e™?
Deuxiéme ordre.(a,b, c sont des réels)

(E) :ay” + by + cy = ¢(t)

Si ¢ est de la forme t — P(t)e™ (m étant un réel et P un polynome).
on cherche une solution sous la forme ¢ +—— Q(t)e™!, ol Q un polynéme & déterminer.

Exemples : Yy y=eH y"(t) — 3y (t) + y(t) = te?

1. On notera qu’on ne devrait 'utiliser que lorsque les coefficients sont constants, mais pour les équations d’ordre 1 ou 2
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