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Cardinal

1.1 Définition

Définition :

Dire qu’un ensemble non vide E est fini
signifie qu’il existe un entier naturel n et une bijection de [[1;n]] dans E.

Ce nombre n est alors unique et est appelé cardinal de E.

Proposition :

Soient E et F deux ensembles finis,
E et F ont le même cardinal si, et seulement si, il existe une bijection entre E et F .

1.2 Propriétés du cardinal.

Propositions : (parties d’un ensemble fini)

➊ Toute partie d’un ensemble fini est un ensemble fini.

Soit E un ensemble fini et A et B deux parties de E,

➋ Si A ⊂ B alors card(A) ⩽ card(B)

➌ A ⊂ B et card(A) = card(B) si, et seulement si, A = B.

➍ Si A et B sont deux parties disjointes de E ( ie : A ∩B = ∅), alors :

card(A ∪B) = card(A) + card(B)

➎ card(A) = card(E)− card(A)

Théorème : (Réunion de parties deux à deux disjointes.)

Si (Ai)i∈[[1,p]] est une famille de p parties deux à deux disjointes, alors

card

(
p⋃

i=1

Ai

)
=

p∑
i=1

card(Ai)

Remarques :

”2 à 2 disjointes” : ∀(i, j) ∈ [[1; p]], i ̸= j =⇒ Ai ∩Aj = ∅

Si les (Ai)i∈[[1,p]] sont deux à deux disjoints et si B =

p⋃
k=1

Ak alors : card(B) =

p∑
k=1

card(Ak)
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Lemme des bergers.

Si les (Ai)i∈[[1,p]] sont deux à deux disjoints, si B =

p⋃
k=1

Ak et si card(Ak) = m

alors : card(B) = p×m

Définition : (Complément)

Si (Ai)i∈[[1,p]] est une famille de p parties d’un même ensemble E et B est une partie de E.

Dire que (Ai)i∈[[1,p]] est une partition de B signifie que :

➊ les (Ai)i∈[[1,p]] sont deux à deux disjoints , ➋ B =

n⋃
k=1

Ak et ➌ ∀k ∈ [[1, n]], Ak ̸= ∅

Remarque : En probabilité on parle souvent de partition même si certains événements sont vides.

Théorème : (Réunion de deux ou trois parties quelconques.)

• Si A et B sont deux parties de E, alors :

card(A ∪B) = card(A) + card(B)− card(A ∩B)

• Si A, B et C sont trois parties de E, alors :

card(A ∪B ∪ C) = card(A) + card(B) + card(C)

− card(A ∩B)− card(B ∩ C)− card(A ∩ C) + card(A ∩B ∩ C)

Remarque : On peut généraliser ce théorème souvent appelé formule de Poincaré ou formule du crible.

card

(
n⋃

k=1

Ak

)
=

n∑
k=1

(−1)k+1
∑

I∈Pk([[1,n]])

card
(⋂

i∈I

Ai

)

Théorème : (produit cartésien)

Si A et B sont deux ensembles finis, alors A×B est un ensemble fini et :

card(A×B) = card(A) card(B)

Remarque : On peut généraliser

card(A1 × · · · ×An) = card(A1)× · · · × card(An)
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2
Dénombrement des ensembles classiques.

2.1 Ensemble des p-listes ou p-uplets.

Définition :

On appelle p-listes d’un ensemble E, les éléments du produit cartésien Ep.

Remarque : cette définition ne se restreint pas aux ensembles finis.

Notation : Les listes sont notées :
(
x1, x2, ..., xp

)
, avec des parenthèses ! ! !

Les listes de p éléments de E sont notés (x1, ..., xp) avec les xi ∈ E et la propriété :

(x1, ..., xp) = (x′
1, ..., x

′
p) ⇐⇒ ∀i ∈ [[1, p]], xi = x′

i

Attention : (1, 2, 1) ̸= (2, 1, 1)
Proposition :

Soit p ∈ N∗ et E un ensemble fini de cardinal n, le nombre de p-listes E est égale à : np

Remarque : card(Ep) = card(E)
p

Tirages dans une urne :

Les listes permettent de modéliser les tirages successifs avec remise dans une urne.

2.2 Ensemble des p-uplets sans répétition (arrangements).

Dire qu’une p-liste (x1, x2, . . . , xp) est sans répétition signifie que ∀(i, j) ∈ [[1, p]]2, i ̸= j =⇒ xi ̸= xj

Proposition :

Etant donné deux entiers n et p strictement positifs (p ⩽ n) et E un ensemble de cardinal n.

Le nombre de p-listes sans répétition d’éléments de E est égal à : n(n− 1) · · · (n− p+ 1)︸ ︷︷ ︸
p facteurs

.

Remarque : n(n− 1) · · · (n− p+ 1) =

p−1∏
k=0

(n− k) =
n!

(n− p)!
= p!

Ç
n

p

å
Tirages dans une urne :

Les listes sans répétition permettent de modéliser les tirages successifs sans remise dans une urne.
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2.3 Ensemble des permutations.

Définition

Soit E un ensemble fini, une liste contenant exactement une fois chaque élément de E est
appelée une permutation de E.

Proposition

Si card(E) = n le nombre de permutations de E est égal à : n! .

Tirages dans une urne :

Les permutations permettent de modéliser les tirages successifs sans remise de tous les objets d’une urne.

2.4 Ensemble des p-combinaisons d’un ensemble fini.

Définition :

Soit p ∈ N, une combinaison de p éléments de E est un sous-ensemble de E à p éléments.

Notation :

Une combinaison s’écrit
{
x1, x2, . . . , xp

}
(des accolades ! ! ) avec ∀(i, j) ∈ [[1, p]]2, i ̸= j =⇒ xi ̸= xj

Proposition :

Etant donné deux entiers n et p tels que p ⩽ n et E un ensemble de cardinal n.

Le nombre de p-combinaisons est égal à :
1

p!
n(n− 1) · · · (n− p+ 1)︸ ︷︷ ︸

p facteurs

=

Ç
n

p

å
Tirages dans une urne : Les combinaisons permettent de modéliser les tirages simultanés dans une urne.

Simulation : on se ramène usuellement à un tirage successif sans remise.

Proposition : Le nombre de listes strictement croissantes de p éléments de [[1;n]] est égal à

Ç
n

p

å
.

2.5 Nombre de parties d’un ensemble fini.

Théorème :

Soit E un ensemble fini à n éléments, l’ensemble P(E) des parties de E est fini et :

card (P(E)) = 2n

Démonstration.

2.6 Complément : Nombre d’anagrammes.

Théorème des anagrammes.

Soit un ”mot” M formé de p lettres distinctes A1, A2, · · ·Ap, la lettre A1 apparâıt n1 fois, ... , la
lettre Ap apparâıt np fois. (La longueur de M vaut N = n1 + n2 + · · ·+ np).

Le nombre d’anagrammes de ce mot est égal à :
N !

n1!n2! · · · np!

ou encore

Ç
N

n1

åÇ
N − n1

n2

åÇ
N − n1 − n2

n3

å
· · ·
Ç
np−1 + np

np−1

å
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3
Somme sur un ensemble fini.

Définition, notation :

Soient E un ensemble fini, tel que E = {e1, e2, · · · , en} avec card(E) = n
et f une application de E dans F avec F un ensemble muni d’une somme.

On note :
∑
x∈E

f(x) =

n∑
i=1

f(ei)

Propositions :

Soit E un ensemble fini,

➊ Si A1, A2 , . . ., Ap forment une partition de E alors :

∑
x∈E

f(x) =

p∑
k=1

(∑
x∈Ak

f(x)

)

➋ Si σ est une bijection de E dans E,∑
x∈E

f(x) =
∑
x∈E

f(σ(x))

On ne change pas la somme si on modifie l’ordre dans lequel on fait la somme.

➌ card(E) =
∑
x∈E

1 et pour λ ∈ R,
∑
x∈E

λ = λ card(E)

➍ Soit A une partie de E,

card(A) =
∑
x∈E

1A(x)
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4
Applications et cardinal (complément).

4.1 Nombre d’applications entre deux ensembles finis.

Soient n et p deux entiers naturels non nuls,

E et F deux ensembles finis tels que card(E) = n et card(F ) = p.

Le nombre d’applications de E dans F est égal à pn

4.2 Nombre d’injections entre deux ensembles finis.

Soient n et p deux entiers naturels non nuls,

E et F deux ensembles finis tels que card(E) = n et card(F ) = p.

Le nombre d’injections de E dans F est égal à : p(p− 1) · · · (p− n+ 1)︸ ︷︷ ︸
n facteurs

.

4.3 Nombre de bijections entre deux ensembles finis.

Soient n un entier naturel non nul,

E et F deux ensembles finis tels que card(E) = n et card(F ) = n.

Le nombre de bijections de E dans F est égal à n!

4.4 Conditions nécessaires sur les cardinaux.

Proposition :

Soit E et F deux ensembles finis,

S’il existe une injection de E dans F alors card(E) ⩽ card(F )

S’il existe une surjection de E dans F alors card(E) ⩾ card(F )

S’il existe une bijection de E dans F alors card(E) = card(F )

4.5 Application entre deux ensembles de même cardinal.

Proposition :

Soit f : E → F avec E et F deux ensembles finis tels que card(E) = card(F )

f est injective si, et seulement si, f est bijective.

f est surjective si, et seulement si, f est bijective.
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