Cardinal

1.1 Définition

Définition :

Dire qu’un ensemble non vide F est fini

Ce nombre n est alors unique et est appelé cardinal de F.

signifie qu’il existe un entier naturel n et une bijection de [1;n] dans E.

Proposition :

Soient E et F' deux ensembles finis,

FE et F ont le méme cardinal si, et seulement si, il existe une bijection entre F et F'.

1.2 Propriétés du cardinal.

Propositions : (parties d’un ensemble fini)

O Toute partie d’un ensemble fini est un ensemble fini.

Soit E' un ensemble fini et A et B deux parties de F,
2] Si AcC B alors card(4) < card(B)

(3] A C B et card(A) = card(B) si, et seulement si, A= B.

(4] Si A et B sont deux parties disjointes de £ (ie: AN B = @), alors :

card(A U B) = card(A) + card(B)

(5] card(A) = card(E) — card(A)

Théoréme : (Réunion de parties deux & deux disjointes.)

Si (4;) ie1,p] €St une famille de p parties deux a deux disjointes, alors

p p
card <U Al-) = anrd(AZ—)
i=1 i=1

Remarques :

72 & 2 disjointes” : V(i,7) € [1;p], i#j=ANA =0

p

p
Si les (A;);e,, sont deux a deux disjoints et si B = U Ay alors : card(B) = Z card(Ay)
k=1

k=1



Lemme des bergers.

P
Si les (A;);e,, sont deux a deux disjoints, si B = U Ap et sicard(Ax) =m
k=1
alors : card(B) =pxm

Définition : (Complément)

Si (Ai);eu,p) est une famille de p parties d’un méme ensemble E et B est une partie de E.

Dire que (Ai)ie[u,p]] est une partition de B signifie que :

O les (Ai)ie[[l,p]] sont deux a deux disjoints, @ B = U A, et O Vke[l,n], Ap#O
k=1

Remarque : En probabilité on parle souvent de partition méme si certains événements sont vides.

Théoréme : (Réunion de deux ou trois parties quelconques.)

e Si A et B sont deux parties de F, alors :
card(A U B) = card(A) + card(B) — card(AN B)
e Si A, B et C sont trois parties de F, alors :

card(AUBUC) = card(A) + card(B) + card(C)
—card(AN B) —card(BN C) — card(ANC) 4 card(AN BN C)

Remarque : On peut généraliser ce théoreme souvent appelé formule de Poincaré ou formule du crible.

card (CJ Ak.> Y)Y eard (N4)

k=1 k=1 Ie 2. ([1,n]) i€l

Théoréme : (produit cartésien)

Si A et B sont deux ensembles finis, alors A x B est un ensemble fini et :

card(A x B) = card(A) card(B)

Remarque : On peut généraliser

card(4; x -+ x A,) = card(A;) x -+ x card(A,,)



Dénombrement des ensembles classiques.

2.1 Ensemble des p-listes ou p-uplets.

Définition :

’ On appelle p-listes d'un ensemble E, les éléments du produit cartésien EP.

Remarque : cette définition ne se restreint pas aux ensembles finis.

Notation : ’Les listes sont notées : (xl,xg, ...,xp) , avec des parentheses!!!

Les listes de p éléments de E sont notés (z1, ..., ) avec les z; € E et la propriété :

(T1,00y2p) = (@, ., 2,) <= Vie[l,p], ;==

Attention : (1,2,1) # (2,1,1)
Proposition :

’ Soit p € N* et E un ensemble fini de cardinal n, le nombre de p-listes E est égale & : n?

Remarque : card(EP) = card(E)”
Tirages dans une urne :

Les listes permettent de modéliser les tirages successifs avec remise dans une urne.

2.2 Ensemble des p-uplets sans répétition (arrangements).

Dire qu'une p-liste (21,22, ...,2,) est sans répétition signifie que V(i,j) € [1,p]?, i#j= x; # x;

Proposition :

Etant donné deux entiers n et p strictement positifs (p < n) et E un ensemble de cardinal n.

Le nombre de p-listes sans répétition d’éléments de E est égal &: n(n—1)---(n—p+1).

p facteurs

= n! n
Remarque: n(n—1)---(n—p+1) = kl;[@(n—k) = ] = p!(p)

Tirages dans une urne :

Les listes sans répétition permettent de modéliser les tirages successifs sans remise dans une urne.



2.3 Ensemble des permutations.

Définition

Soit E un ensemble fini, une liste contenant exactement une fois chaque élément de E est
appelée une permutation de FE.

Proposition

’ Si card(F) =n le nombre de permutations de E est égal a : n! .

Tirages dans une urne :

Les permutations permettent de modéliser les tirages successifs sans remise de tous les objets d’une urne.

2.4 Ensemble des p-combinaisons d’un ensemble fini.

Définition :

’ Soit p € N, une combinaison de p éléments de E est un sous-ensemble de E a p éléments. ‘

Notation :

Une combinaison s’écrit {xl,xg, e a:p} (des accolades!! ) avec V(i,j) € [1,p]?, i#j= z; #z;

Proposition :

Etant donné deux entiers n et p tels que p < n et E un ensemble de cardinal n.

1
Le nombre de p-combinaisons est égala: — n(n—1)---(n—p+1) = (n)
b p

p facteurs

Tirages dans une urne : Les combinaisons permettent de modéliser les tirages simultanés dans une urne.

Simulation : on se rameéne usuellement & un tirage successif sans remise.

n
Proposition : | Le nombre de listes strictement croissantes de p éléments de [1;n] est égal & ( )
p

2.5 Nombre de parties d’un ensemble fini.

Théoréme :

Soit E un ensemble fini & n éléments, 'ensemble 2 (E) des parties de F est fini et :

card (#(F)) = 2"

Démonstration.

2.6 Complément : Nombre d’anagrammes.

Théoreme des anagrammes.

Soit un "mot” M formé de p lettres distinctes Ai, Ao, - -+ A,, la lettre Ay apparait ny fois, ... , la
lettre A, apparait n, fois. (La longueur de M vaut N =nq +ng +---+n,).
N!

nilng! - np!

N N —ny N —ny —no Np—1 + Ny
ou encore -
ny n2 ns3 Np—1

Le nombre d’anagrammes de ce mot est égal a :




Somme sur un ensemble fini.

Définition, notation :

Soient E un ensemble fini, tel que E = {ey, ez, -, e,} avec card(E) =n
et f une application de E dans F' avec F' un ensemble muni d’une somme.

On note : Z flz) = Z f(es)

zeEFR

Propositions :

Soit E un ensemble fini,

0 Si Ay, Ay, ..., A, forment une partition de E alors :
p
RIOEDS ( > f(l“))
zeFE k=1 \z€Ay

@ Si 0 est une bijection de F dans FE,
S f@) = flo)
z€E zeE
On ne change pas la somme si on modifie lordre dans lequel on fait la somme.
(3] card(F) = Z 1 et pour A € R, Z A= Acard(E)

zelE zelE
® Soit A une partie de E,

card(A) = Z 1a(x)

zeE




Applications et cardinal (complément).

4.1 Nombre d’applications entre deux ensembles finis.

Soient n et p deux entiers naturels non nuls,
E et F deux ensembles finis tels que card(E) = n et card(F) = p.
Le nombre d’applications de E dans F' est égal a p”

4.2 Nombre d’injections entre deux ensembles finis.

Soient n et p deux entiers naturels non nuls,
E et F deux ensembles finis tels que card(E) =n et card(F) = p.
Le nombre d’injections de E dans F est égal & : p(p—1)---(p—n+1).

n facteurs

4.3 Nombre de bijections entre deux ensembles finis.

Soient m un entier naturel non nul,
E et F deux ensembles finis tels que card(E) = n et card(F) = n.

Le nombre de bijections de E dans F' est égal a n!

4.4 Conditions nécessaires sur les cardinaux.

Proposition :

Soit E et F' deux ensembles finis,
S’il existe une injection de E dans F alors card(E) < card(F')
S’il existe une surjection de E dans F' alors card(E) > card(F)
S’il existe une bijection de E dans F alors card(E) = card(F)

4.5 Application entre deux ensembles de méme cardinal.

Proposition :

Soit f:E — F avec E et F' deux ensembles finis tels que card(E) = card(F)

f est injective  si, et seulement si, f est bijective.

f est surjective  si, et seulement si, f est bijective.
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