Table des matières

1	Déf	initions.
	1.1	Variables aléatoires
	1.2	Ensemble des valeurs prises
	1.3	Variables aléatoires et événements
	1.4	Système complet associé à une variable aléatoire
	1.5	Loi de probabilité
	1.6	Fonction de répartition
	1.7	Espérance
		1.7.1 Définitions
		1.7.2 Linéarité
		1.7.3 Théorème de transfert
	1.8	Variance.
		1.8.1 Définitions
		1.8.2 Formule de Kœnig-Huygens
		1.8.3 Propriétés
		1.8.4 Ecart-type
2	Lois	s usuelles.
	2.1	Loi certaine
	2.2	Loi de Bernoulli
	2.3	Loi uniforme.
	2.4	Loi binomiale

Définitions.

Soient Ω un univers fini et un espace probabilisé $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$.

1.1 Variables aléatoires.

Définition

Les variables aléatoires sur Ω sont les applications de Ω dans $\mathbb R$

1.2 Ensemble des valeurs prises.

$$X(\Omega) = \{X(\omega) \mid \omega \in \Omega \}$$

1.3 Variables aléatoires et événements.

Soient B une partie de \mathbb{R} , a,b,x des nombres réels, on peut définir à l'aide d'une variable aléatoire X les événements $(par\ exemple)$:

$$[X \in B] = \{ \ \omega \in \Omega \mid X(\omega) \in B \ \} \qquad [X = a] = \{ \ \omega \in \Omega \mid X(\omega) = a \ \} \ \ (\textit{les antécédents de a par X}).$$

1.4 Système complet associé à une variable aléatoire.

Soit X une variable aléatoire sur Ω , avec $X(\Omega) = \{x_1, x_2, \dots, x_r\}$ avec $x_1 < x_2 < \dots < x_r$.

La famille $([X = x_i])_{1 \leqslant i \leqslant r}$ est un système complet d'événements.

1.5 Loi de probabilité.

Définition.

La loi de probabilité de
$$X$$
 est l'application : $X(\Omega) \longrightarrow [0,1]$
 $x \longmapsto \mathbb{P}([X=x])$

1.6 Fonction de répartition.

Définition

Soit X une variable aléatoire sur Ω ,

On appelle fonction de répartition de X la fonction $F: \mathbb{R} \longrightarrow [0,1]$ $x \longmapsto \mathbb{P}([X \leqslant x])$

Proposition:

Pour tout $(a, b) \in \mathbb{R}^2$ tel que $a \leq b$ on a :

$$\mathbb{P}([a < X \leqslant b]) = F(b) - F(a)$$

1.7 Espérance

1.7.1 Définitions.

Définition

Soit X une variable aléatoire.

L'espérance mathématique de X est le réel $\mathbb{E}(X)$ défini par : $\mathbb{E}(X) = \sum_{x \in X(\Omega)} x \, \mathbb{P}([X = x])$

1.7.2 Linéarité.

Proposition : (linéarité de l'espérance)

X, Y sont deux variables aléatoires sur Ω et a et b deux réels.

$$\mathbb{E}(aX + bY) = a\,\mathbb{E}(X) + b\,\mathbb{E}(Y)$$

1.7.3 Théorème de transfert.

Théorème:

Soient φ une fonction de \mathbb{R} dans \mathbb{R} (définie sur $X(\Omega)$) et X une variable aléatoire sur Ω , La variable aléatoire $\varphi(X)$ a pour espérance :

$$\mathbb{E}(\varphi(X)) = \sum_{x \in X(\Omega)} \varphi(x) \ \mathbb{P}([X = x])$$

1.8 Variance.

1.8.1 Définitions.

Définition

La variance d'une variable aléatoire X est le réel V(X) défini par : $V(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$

1.8.2 Formule de Kœnig-Huygens.

Proposition:

Pour toute variable aléatoire X sur Ω , on a : $V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

1.8.3 Propriétés.

Proposition:

Pour toute variable aléatoire X sur Ω , et pour tous réels a et b, on a : $V(aX + b) = a^2V(X)$.

1.8.4 Ecart-type.

L'écart-type d'une variable aléatoire X est le réel :

$$\sigma = \sqrt{V(X)}$$

Définitions:

- On dit qu'une variable aléatoire est **réduite** lorsque V(X) = 1.
- Pour X une variable aléatoire telle que $V(X) \neq 0$,

$$X^* = \frac{X - \mathbb{E}(X)}{\sigma_X}$$
 est appelée variable aléatoire centré réduite associée à X .

3

Lois usuelles.

Soient n un entier non nul et X une variable aléatoire de $(\Omega; \mathscr{P}(\Omega), \mathbb{P})$,

2.1 Loi certaine.

Soit a un nombre réel.

La variable certaine égale à a est la fonction constante $X:\ \Omega\longrightarrow\ \mathbb{R}$

 $\omega \longmapsto a$

On a : $X(\Omega) = \{a\}$ et $\mathbb{P}([X = a]) = 1$, $\mathbb{E}(X) = a$

V(X) = 0.

2.2 Loi de Bernoulli.

Définition:

Soit p un réel de]0,1[,

Dire que X suit une loi de Bernoulli de paramètre p signifie que :

$$\left\{ \begin{array}{l} X(\Omega) = \{0, 1\} \\ \mathbb{P}([X = 0]) = 1 - p \ ; \quad \mathbb{P}([X = 1]) = p \end{array} \right.$$

On note : $X \hookrightarrow \mathcal{B}(p)$ et on a : $\mathbb{E}(X) = p$ et V(X) = p(1-p)

Remarque: (fonction indicatrice)

Si A est un événement de Ω alors $\mathbb{1}_A$ est une variable aléatoire et $\mathbb{1}_A \hookrightarrow \mathcal{B}(\mathbb{P}(A))$

Simulation avec une fonction Python:

2.3 Loi uniforme.

Définition:

Dire que X suit une loi uniforme sur [1; n] signifie que :

$$\left\{ \begin{array}{l} X(\Omega) = \llbracket 1; n \rrbracket \\ \\ \forall i \in \llbracket 1; n \rrbracket \;, \quad \mathbb{P}([X=i]) = \frac{1}{n} \end{array} \right.$$

On note : $X \hookrightarrow \mathcal{U}(\llbracket 1; n \rrbracket)$ et on redémontre que $\mathbb{E}(X) = \frac{n+1}{2}$ et $V(X) = \frac{n^2-1}{12}$

Simulation avec une fonction Python:

def uniforme_discret(a,b):
return int((b-a+1)*random())+a

Loi binomiale.

Définition:

On note :
$$X \hookrightarrow \mathcal{B}(n,p)$$
 et on a $\mathbb{E}(X) = np$ et $V(X) = np(1-p)$

Dans quelles situations peut-on observer une loi binomiale?

Soit \mathcal{E} une expérience constituée de n épreuves identiques et indépendantes $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_n$ (toutes modélisées par $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$) et A un événement de Ω de probabilité $\mathbb{P}(A) = p$.

Si X est la variable aléatoire égale au nombre de réalisation de A au cours des n épreuves alors : $X \hookrightarrow \mathcal{B}(n,p)$.

Autre situation.

Proposition : Somme de n variables de Bernoulli identiques et indépendantes.

La somme de n variables de Bernoulli de paramètre p (mutuellement) indépendantes est une variable aléatoire suivant la loi binomiale de paramètres (n, p)

Soient n un entier naturel non nuls et p un réel de l'intervalle]0,1[

Si
$$\begin{cases} & \textcircled{1} \ X_1, \dots, X_n \ \text{ sont indépendantes} \\ & \textcircled{2} \ \forall i \in \llbracket 1; n \rrbracket, \quad X_i \hookrightarrow \mathscr{B}(p) \\ & \textcircled{3} \ X = X_1 + X_2 + \dots + X_n \end{cases}, \quad \text{alors} \quad X \hookrightarrow \mathscr{B}(n,p)$$

Simulation avec une fonction Python:

```
def binomiale(n,p):
x = 0
for k in range(n):
    x += bernoulli(p)
return x
```