Variables aléatoires discretes.

On considére un espace probabilisé (2; .7, P) quelconque.

1.1 Définition

Définition.

Soit X une variable aléatoire sur (Q; .7, P)

Dire que X est une variable aléatoire discrete signifie que X (€) est un ensemble de réels fini ou dénombrable.

Remarques : fini dénombrable

—_———

e Lorsque X est une variable aléatoire discréte, on note X(Q2) ={ a; |i €I } avec I =[l;n] ou I=N

(et V(i,7) € I?, i#j=>x; # x;)
o Eztrait du programme : Une variable aléatoire est dite discrete si ’ensemble X (€2) de ses valeurs est inclus dans
un sous-ensemble N de R indexé par une partie de N.
e Comment bien définir une variable aléatoire ?

En pratique 1 : On nous donne X(Q) ={ z; |i €I } et P(X = ;) =p;
Vérifier si X est bien définie revient a :
O Vérifier que les x; sont 2 & 2 distincts. @ queViel, p; >0 @ et que Z vaut 1.
i€l

Exemples : Feuille Cours_5

Proposition.

Si (25),,cn est une suite de réels deux a deux distincts et (p,), oy une suite de réels positifs tels que an
converge et a pour somme 1 , alors il existe une variable aléatoire réelle discréte X sur (92; 7, P) vérifiant

P (X = x,,) = p, pour tout entier naturel n.

En pratique 2 : (On décrit une expérience aléatoire)
On décrit une expérience aléatoire avec €2 quelconque. On note E' la partie de 2 o X n’est pas définie.
X est une variable aléatoire bien définie lorsque P(FE) = 0.
Dans ce cas la on confond et Q\ FE

Exemples : Feuille Cours_5

e Fxtrait du programme : On tolere qu’une variable aléatoire issue d’une expérience aléatoire puisse ne pas étre
définie sur un événement de probabilité nulle.

1.2 Systeme complet d’événements associé a X

Théoréme.
Soit X une variable aléatoire sur (§2; .7, P)
Si X est une variable aléatoire discrete avec X(Q) ={ a; |i€ 1} (avec i # j = x; # xj)
alors ([X = x;])ier est un systéme quasi-complet d’événements.




1.3 Loi de probabilité

Définition.

Soit X est une variable aléatoire discrete.

L’application X(Q2) — R est appelée loi de probabilité de X.
x — P(X=x)

Définition. Loi conditionnelle.

Soit X est une variable aléatoire discréte et A un événement de probabilité non nulle.

L’application X (92) — R est appelée loi de probabilité de X sachant A .
x — Pu(X =2x)

1.4 Espérance et variance d’une variable aléatoire réelle discrete.

1.4.1 Espérance

Définition (Espérance mathématique d’une variable aléatoire discréte.)

e Lorsque X (2) est fini, en notant n = card(X(Q)) et X(Q) = {zx | k€ [1;n] }
on appelle espérance mathématique de X le réel : E(X) = Z xp P(X = xy)
k=1
e Lorsque X (£2) est dénombrable, en notant X (Q) = {xn |n € N} (avec les (zn) 2 & 2 distincts ),

X admet une espérance si, et seulement si, la série g 2nP(X = x,,) est absolument convergente.
n=0

—+oo
alors I'espérance mathématique de X est le réel : E(X) = Z x, P(X = x,)
n=0

En pratique.
e Cas fini.

7 X (Q) est fini donc X admet une espérance et E(X) = Z:ck P(X =)
k=1

e Cas dénombrable.

0 7 X admet une espérance si et seulement si, g 2, P(X = ;) est absolument convergente.”
n=0

On montre que : Z |xn|P(X = x,) est convergente et on dit que X admet une espérance.
n=0

+oo
0 On calcule 'espérance E(X) = Z zn P(X = x,)

n=0
Exemples : Feuille Cours_5
Remarques :
+oo
e La convergence absolue est nécessaire pour que la somme Z zn, P(X =x,) ne dépende pas du choix des (z,)
n=0

pour décrire X ()
e Retenir que certaines variables aléatoires n’ont pas d’espérance. (Exemple : feuille Cours_5)
e Une variable aléatoire est dite centrée lorsque son espérance est nulle.

Théoréme : (linéarité)

Soient X et Y deux variables aléatoires d’un méme espace probabilisé,
Si X et Y admettent chacune une espérance alors
pour tout réel a et b, aX + bY admet une espérance et E(aX +bY) = aFE(X)+bE(Y).




Proposition : (Croissance)

Soient X et Y deux variables aléatoires d’'un méme espace probabilisé,
0 5Si X >0 et X admet une espérance alors F(X) > 0.
B Si X <Y etsi X etY admettent chacune une espérance alors E(X) < E(Y)

En effet :

Généralisation

Soient n € N*, (Xj)1<k<n une liste de variables aléatoires sur un méme espace probabilisé
et (ar)1<k<n une liste de réels.

n n
Si les X} possedent toutes une espérance alors F (Z aka> = Z apE(Xg)
k=1 k=1

En effet :

1.4.2 Théoréme de transfert.

Théoreme. (Théoréme de transfert)

Soient X une variable aléatoire réelle discréte et f une fonction définie sur X (),
Dans le cas fini. on note : n le cardinal de X(2) et X(Q) = {zy | k € [1;n] },
Pespérance de f(X) vérifie : E(f(X)) = E”: flzg) P(X = xy).
k=1
Dans le cas dénombrable. on note: X(Q) ={z, | n € N}, (avec les (zy) 2 & 2 distincts )

f(X) admet une espérance si, et seulement si, Z f(zn)P(X = x,) est absolument convergente.
neN

+oo
et alors l'espérance de f(X) vérifie : E(f(X)) = Z f(zn) P(X = x,).
n=0

Rédaction.
e Cas fini.
X () est fini et f est définie sur X () donc (théoréme de transfert) f(X) admet une espérance

et B(f(X)) = flan) P(X = 1)
k=1

e Cas dénombrable.
O (f est définie sur X(Q))

@ f(X) admet une espérance si et seulement si, Z f(x,)P(X = x,) est absolument convergente.
n>=0

On montre que : Z | f(2,)|P(X = x,) est convergente et on dit que f(X) admet une espérance.
n=0

+oo
® On calcule lespérance E(f(X)) = Z flzn) P(X =)
n=0

Exemples : feuille Cours_5
Remarque : X peut admettre une espérance alors que f(X) non.

En effet :



1.4.3 Variance d’une variable aléatoire discrete.

Définition

Soit X une variable aléatoire discrete.

Dire que X admet une variance signifie que X et (X — F(X))?

on définit alors sa variance par :  V(X) = E (X — E(X))?)

admettent une espérance.

Remarques :
e Retenir que certaines variables aléatoires n’ont pas de variance.

e Dire qu’'une variable aléatoire est réduite signifie que sa variance est égale a 1.

1.4.4 Formule de Kcenig-Huygens.

Lemme. (Ezercice)

Soit X une variable aléatoire discrete,
Si X2 admet une espérance alors X admet une espérance.

Démonstration. (Voir feuille cours_5_2)

Théoreme : (Formule de Kenig-Huygens).

Soit X est une variable aléatoire discrete,

X admet une variance si, et seulement si, X2 admet une espérance
et alors
V(X) = BE(X?) - (B(X))

Démonstration. Fuaite au tableau.

Rédaction.

Cas fini.
? X () est fini donc X admet une variance et E(X) =---, B(X?) = .-+, et ainsi V(X) = E(X?) — B(X)*’

Cas dénombrable.

® 7 X? admet une espérance si, et seulement si, E xiP(X = x,) est absolument convergente.”
n>=0

On montre que : Z |z2|P(X = z,) est convergente et on dit que X admet une variance.
n=0

—+o0 —+o0
0 On calcule les deux espérances E(X) = Z r, P(X = x,) et BE(X?) = Z 22 P(X = x,)
n=0 n=0
® On applique le théoreme de Koenig-Huygens : X admet une variance et V(X) = E(X?) — E(X)?

Exemples : Feuille Cours_5_2



1.4.5 Propriétés de la variance.

Proposition :

Quelle que soit la variable aléatoire X admettant une variance,
@ V(X)=0.

@8Si V(X)=0 alors P([X =m]) =1 (ou m = E(X)),
On dit que X est une variable quasi-certaine.

® Pour toute variable X admettant une variance et a et b deux réels, on a :

aX +b admet une variance et V(aX +b) = a*V(X)

Démonstrations.

1.4.6 Moments d’ordre supérieurs.

Définition :

Pour X une variable aléatoire et n un entier naturel,
Quand X" admet une espérance on appelle E(X") le moment de X d’ordre n.

1.4.7 Ecart-type.

Définition :

Quand X admet une variance, ’écart-type d’une variable aléatoire X est le réel : /V(X)

On note souvent : o = /V(X) ou ox =/ V(X),
d’ott la notation  V(X) = o?

Définition :

Pour X une variable aléatoire admettant une variance V(X) # 0,
4+ X—EX)

0x

est appelée variable aléatoire centré réduite associée a X.

Démonstration.



Indépendance.

2.1 Caractérisations.
Revoir la définition générale de l’indépendance.

Caractérisation. Indépendance de deux variables aléatoires discrétes.

Soient X et Y deux variables aléatoires discretes,
Dire que X et Y sont indépendantes signifie que :
quel que soit le couple (z,y) € R? ;| P(X =z)N (Y =9)) =P(X =z) x P(Y =y)

Caractérisation. Indépendance de n variables aléatoires discrétes.

Soient n un entier supérieur ou égal & 2 et (Xj)1<k<n une liste (finie) de variables aléatoires discretes,

Dire que les X}, sont (mutuellement) indépendantes signifie que :

quel que soit la liste de réels (zr)i<hgn, P m (Xp==z) | = H P(Xy = )
k=1 k=1

2.2 Indépendance d’une suite de variables aléatoires.
(Déja vu dans le chapitre Probabilité).

Définition

Soit (X, )nen une liste de variables aléatoires de (2, .7, P),

Dire que les variables de (X,,)nen sont (mutuellement) indépendantes signifie que :

toute liste finie extraite de la suite est (mutuellement) indépendante.

2.3 Propriétés de I'indépendance mutuelle
(Déja vu dans le chapitre Probabilité).

Théoréme :

Soit (Xi)1<kgn une liste de variables aléatoires de (€2, 7, P),
0Si Xi,,...,X, sont (mutuellement) indépendantes alors

toute sous-famille de (Xy,...,X,) 'est aussi.
0 (Lemme des coalitions)

Soient f:RP - R et g : R" P — R deux fonctions,
si X1,...,Xp,..., Xy, sont (mutuellement) indépendantes alors
f(X1,...,Xp) et g(Xpt1,...,Xp) sont indépendantes.

® Soient f1,..., f, des fonctions de R dans R,
si Xy,...,X, sont (mutuellement) indépendantes alors
f1(X1),. .., fu(Xy) sont (mutuellement) indépendantes.




2.4 Théorémes.

Théoréme :

Soient X et Y deux variables aléatoires discretes sur (Q, 7, P),

O Si X et Y sont indépendantes et admettent des espérances alors
XY admet une espérance et E(XY) = E(X)E(Y).

® Si X et Y sont indépendantes et admettent des variances alors
X +Y admet une variance et V(X +Y) =V (X) 4+ V(Y)

On admet @ car il nous manque un théoréme hors-programme, mais en admettant @ on peut démontrer @ .
Démonstration de @ :

Généralisation :

Soit (Xk)1<kgn une suite de variables aléatoires discretes sur (€2, .7, P),

O Si les X, sont indépendantes et admettent des espérances alors

H X} admet une espérance et E (H Xk> = H E(Xy)

k=1 k=1 k=1
M Si les X, sont indépendantes et admettent des variances alors
n n n
Z Xk admet une variance et V <Z Xk.> = V(Xy)
k=1 k=1 k=1

Démonstration :

2.5 Stabilité des lois de Poisson.

Proposition.

Soient A1, Ao deux réels non nuls et X; et Xs deux variables aléatoires (sur le méme espace probablisé),

X1 — e@(/\l) , Xog — t@()\g)
Si alors X; + Xo — P(A\ + A2)

et X1, X5 sont indépendantes

Démonstration : Voir feuille Cours_5_4

Généralisation .

Soient (X%)1<k<n une liste de variables aléatoires, (Ag)1<r<n une liste de réels non nuls,
(sur le méme espace probablisé)

N N
onnote:X:ZXk et )\:Z)\k.
k=1 k=1

Si les X sont mutuellement indépendantes et si Vk € N, Xy < P(\;) alors X — Z(\)

Démonstration : Voir feuille Cours_5_4

2.6 Complément.

Théoréme

Soit (Ag)1<k<n une famille d’événements,

Les événements Ay sont mutuellement indépendants
si, et seulement si, les variables aléatoires 14, sont indépendantes.




Lois finies usuelles.

3.1 Loi certaine.

Soit @ un nombre réel.
Dire que X est la variable certaine égale a a signifie que X est la fonction constante X :  — R

w— a
Ona: X(Q)={a} e P([X=4d])=1 EX)=a V(X)=0.
Remarque : Dire que X est ”quasi-certaine égale & a” signifie que P([X =a]) =1
3.2 Loi de Bernoulli.
Définition :
Soit p un réel de 10, 1],
X(Q) ={0,1}
dire que X suit une loi de Bernoulli de parametre p signifie que : ¢ P([X =0])=1-p
P(X =1]) =

Onnote: X — B(p)etona: E(X)=p et V(X)=p(l-—p)
Remarque : Si A est un événement de ) alors 14 est une variable aléatoire et 14 — B(P(A))

Simulation avec une fonction Python : def bernoulli(p):

if rd.random() <= p :

return 1
return O
3.3 Loi uniforme.
Définition :
Soient a et b deux entiers relatifs tels que a < b,
X(Q) = [a; 0]
. el . . . . i . . 1
Dire que X suit une loi uniforme sur [a; b] signifie que : vie[ab], P(X=i)= ; =
—a

On note : X < U ([a;b]), ( Attention : Ne pas confondre avec X < U ([a; b])

Proposition :

a+b
2

si X > U ([a;0]) alors FE(X)=

Démonstration. (A savoir faire)
(b—a)b—a+2))

Remarque : Savoir retrouver la variance (Voir la feuille Cours_5_.2) V(X)) = 13




Simulation avec une fonction Python (sans randint) :

def uniforme(a, b):
return floor( a+ (b-a+l)*rd.random() ) # floor importé de math

V<1l Fx(z)=0
Remarque : Si X < U ([1;n]) alors Ve e [1,n], Fx(z)= l=]
n

Ve >n, Fx(z)=1

3.4 Loi binomiale.

Définition :
Soit n € N* et p un réel de ]0,1[, X une variable aléatoire,
Dire que X suit une loi binomiale de parametres (n, p) signifie que :

X(Q2) = [0;n]
whe ol (X = k) = ([ )k - ot

On note : X — B(n,p) etona E(X)=np et V(X)=np(l—p) (démonstrations dans la feuille_5_2)

Dans quelle situation peut-on observer une loi binomiale ?

Si une expérience est constituée de n épreuves de Bernoulli identiques et indépendantes et si X désigne le
nombre de succes alors X suit la loi binomiale de parametres (n,p) ol p est la probabilité du succes.

Remarque : On se retrouve dans cette situation lors d’un tirage successif avec remise.

Simulation avec une fonction Python :

def binomiale(n,p):
x=0
for k in range(n):
X += bernoulli(p)
return Xx

Proposition : Somme de n variables de Bernoulli identiques et indépendantes.

La somme de n variables de Bernoulli de parameétre p (mutuellement) indépendantes est une variable
aléatoire suivant la loi binomiale de parameétres (n, p)

Soient n un entier naturel non nuls et p un réel de l'intervalle ]0, 1]

® Xi,...,X, sont indépendantes
Si @Vie[l;n], X, B , alors X — %B(n,p)
OX=X1+Xo+ - +X,

Stabilité de la loi binomiale. (Complément)

Soient X et X5 deux variables aléatoires, nj, ny deux entiers naturels non nuls et p un réel de 10, 1]
Si X; et X5 sont indépendantes et si X; < #(n1,p) et Xo — B(n2,p)

alors
X1+ Xo = HB(ny +nz, p)

Généralisation .

Soient (X)1<r<n une liste de variables aléatoires, (ny)1<k<n une liste d’entiers naturels non nuls et

N N
p un réel de ]0, 1], on note : X = ZXk et n= an
k=1 k=1
Si les X}, sont mutuellement indépendantes et si Vk € N, Xy, — B(ng, p) alors X < %B(n,p)




Lois discretes infinies usuelles.

4.1 Lois géométriques

4.1.1 Définition

Soient X une variable aléatoire réelle et p un réel de ]0, 1],

Dire que X suit une loi géométrique de parametre p signifie :

X(Q):N* Vn € N, P(X:n):(l—p)”*lp

Remarques :
e On note X — ¥(p).
eEnnotant g=1—p, ona: VYneN*, PX=n)=¢"'p

Situation type. (Rédaction)

”Cette expérience est la succession d’un nombre indéfini d’épreuves de Bernoulli identiques et indépendantes,
le succes est la probabilité du succes vaut p,

X est le rang du premier succes donc X < ¥(p).”

4.1.2 Fonction de répartition.

Description.

Soit F' la fonction de répartition d’une variable X suivant une loi géométrique de parametre p,
O Pour tout n <1, F(n)=0
® Pour tout n € N*, F' est constante sur [n;n+1[ et F(n) =1—¢"

Remarques : (Feuille Cours_5_3)

n
e La démonstration (d refaire) est le calcul : Z ¢ tp=1-¢",
k=1
mais pour le retrouver il est plus simple de remarquer :

[X > n] : 7avoir des échecs au cours des n premieres épreuves”, donc P(X > n) = ¢"

eSi X »¥(p) alors VneN', PX<n)=1—-¢" e P(X>n)=4q"

4.1.3 Espérance et variance.

Proposition.

Soit X un variable aléatoire réelle,
si X suit une loi géométrique de parametre p alors X admet une espérance et une variance et

Démonstration. (Feuille Cours_5_3)
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4.1.4 Loi sans mémoire.

Proposition

Soient X une variable aléatoire réelle et p un réel de |0, 1],
si X suit une loi géométrique de parametre p alors

V(k,n) € N x N*, P([X:n+k]|[X>k]>:P([X:n})

Démonstration. (Feuille Cours_5_3)

Remarques : (interprétation)

e En se plagant dans la situation type : [X > k] : 7 Pas de succes pendant les k premiers lancers ”

on observe les n prochains lancers le rang du premier succes suit la loi G(p)

e Si on n’observe 'expérience de 1 a k et qu’il n’y a pas eu de succes alors la loi du temps d’attente du premier

succes est la méme qu’au début.

e Encore une autre interprétation :
On fixe n € N*, et on note Y = X — n,

Sachant (X > n) (il n’y a eu que des échecs du rang 1 au rang n”),
Y est alors le temps d’attente du premier succes a partir du rang n + 1,

La proposition a montré que : la loi conditionnelle sachant (X > n) de Y est la loi 4(p)

e Certains préferent la proposition suivante : (nous la retrouverons avec la loi exponentielle)

V(k,n) € N x N*, P([X>n+k]|[x>k]):P([X>n})

4.1.5 Simulation numérique.
Simulation avec une fonction Python :

def geometrique(p):
x =1
while rd.random() > p :
x += 1
return x

4.2 Loi de Poisson

4.2.1 Définition

Définition.

Soient X une variable aléatoire réelle et A un réel strictement positif,

Dire que X suit une loi de Poisson de parametre \ signifie que :

)\n
X)) =N e VneN, PX=n)= —A

nl

Remarques :
e on note : X — ()
e Siméon Denis Poisson (1781-1840)
e Ne pas oublier de préciser que A € R} au début de cette définition.

e Savoir vérifier rapidement que c¢’est bien une loi de probabilité .

4.2.2 Espérance et variance.

Proposition.

Soient X une variable aléatoire réelle et A un réel strictement positif,

EX)=XA e V(X)=A

Si X suit une loi de Poisson de parametre A\ alors, admet une espérance et une variance et

Démonstration : feuille_Cours_5_3
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4.2.3 Approximation de lois binomiales par des lois de Poisson.

Proposition.

Soient X une variable aléatoire réelle et A un réel strictement positif,

Pour tout k € N,
k n—=k k
A
A (1-2) T e
k n n n—+oo k!

A
En posant p,, = — on obtient :
n

n k —k )\k A
(k> Py (1 —pp) njoo ge

Démonstration : feuille_Cours_5_3

Approximation

Quand n > 30 et p < 0,1 on peut approcher la loi binomiale %(n, p) par la loi de Poisson Z(np) ‘

4.2.4 Simulation numérique.

Approximation

A A
Quand n > 30 et — < 0,1 on peut approcher par la loi de Poisson () par la loi binomiale % (n, )
n n

3| >

Remarque : n > 30 et < 0,1 équivaut & n > max(30,10\)

Simulation avec une fonction Python :

def loi_poisson(lbd): # attention lambda est un mot réservé du langage Python
n = int(max(10*1lbd, 30)) # on choisit n pour avoir n >= 30 et p <= 0.1
p = lbd/n

return binomiale(n, p)

Il existe aussi rd.poisson(1lbd) du module random.
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