
1
Variables aléatoires discrètes.

On considère un espace probabilisé (Ω;T ,P) quelconque.

1.1 Définition

Définition.

Soit X une variable aléatoire sur (Ω;T ,P)
Dire que X est une variable aléatoire discrète signifie queX(Ω) est un ensemble de réels fini ou dénombrable.

Remarques :

• Lorsque X est une variable aléatoire discrète, on note X(Ω) = { xi | i ∈ I } avec

fini︷ ︸︸ ︷
I = [[1;n]] ou

dénombrable︷ ︸︸ ︷
I = N

( et ∀(i, j) ∈ I2, i ̸= j =⇒ xi ̸= xj)

• Extrait du programme : Une variable aléatoire est dite discrète si l’ensemble X(Ω) de ses valeurs est inclus dans
un sous-ensemble N de R indexé par une partie de N.
• Comment bien définir une variable aléatoire ?

En pratique 1 : On nous donne X(Ω) = { xi | i ∈ I } et P (X = xi) = pi

Vérifier si X est bien définie revient à :

➊ Vérifier que les xi sont 2 à 2 distincts. ➋ que ∀i ∈ I, pi ⩾ 0 ➌ et que
∑
i∈I

vaut 1.

Exemples : Feuille Cours 5

Proposition.

Si (xn)n∈N est une suite de réels deux à deux distincts et (pn)n∈N une suite de réels positifs tels que
∑

pn

converge et a pour somme 1 , alors il existe une variable aléatoire réelle discrète X sur (Ω;T ,P) vérifiant
P (X = xn) = pn pour tout entier naturel n.

En pratique 2 : (On décrit une expérience aléatoire)

On décrit une expérience aléatoire avec Ω quelconque. On note E la partie de Ω où X n’est pas définie.

X est une variable aléatoire bien définie lorsque P (E) = 0.

Dans ce cas là on confond Ω et Ω \ E
Exemples : Feuille Cours 5

• Extrait du programme : On tolère qu’une variable aléatoire issue d’une expérience aléatoire puisse ne pas être
définie sur un événement de probabilité nulle.

1.2 Système complet d’événements associé à X

Théorème.

Soit X une variable aléatoire sur (Ω;T ,P)
Si X est une variable aléatoire discrète avec X(Ω) = { xi | i ∈ I } ( avec i ̸= j =⇒ xi ̸= xj)

alors ([X = xi])i∈I est un système quasi-complet d’événements.
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1.3 Loi de probabilité

Définition.

Soit X est une variable aléatoire discrète.

L’application X(Ω) −→ R
x 7−→ P(X = x)

est appelée loi de probabilité de X.

Définition. Loi conditionnelle.

Soit X est une variable aléatoire discrète et A un événement de probabilité non nulle.

L’application X(Ω) −→ R
x 7−→ PA(X = x)

est appelée loi de probabilité de X sachant A .

1.4 Espérance et variance d’une variable aléatoire réelle discrète.

1.4.1 Espérance

Définition (Espérance mathématique d’une variable aléatoire discrète.)

• Lorsque X(Ω) est fini, en notant n = card(X(Ω)) et X(Ω) = {xk | k ∈ [[1;n]] }

on appelle espérance mathématique de X le réel : E(X) =

n∑
k=1

xk P (X = xk)

• Lorsque X(Ω) est dénombrable, en notant X(Ω) = {xn |n ∈ N } ( avec les (xn) 2 à 2 distincts ),

X admet une espérance si, et seulement si, la série
∑
n⩾0

xnP (X = xn) est absolument convergente.

alors l’espérance mathématique de X est le réel : E(X) =

+∞∑
n=0

xn P (X = xn)

En pratique.

• Cas fini.

”X(Ω) est fini donc X admet une espérance et E(X) =

n∑
k=1

xk P (X = xk)”

• Cas dénombrable.

➊ ” X admet une espérance si et seulement si,
∑
n⩾0

xnP (X = xn) est absolument convergente.”

On montre que :
∑
n⩾0

|xn|P (X = xn) est convergente et on dit que X admet une espérance.

➋ On calcule l’espérance E(X) =

+∞∑
n=0

xn P (X = xn)

Exemples : Feuille Cours 5

Remarques :

• La convergence absolue est nécessaire pour que la somme
+∞∑
n=0

xn P (X=xn) ne dépende pas du choix des (xn)

pour décrire X(Ω)

• Retenir que certaines variables aléatoires n’ont pas d’espérance. (Exemple : feuille Cours 5)

• Une variable aléatoire est dite centrée lorsque son espérance est nulle.

Théorème : (linéarité)

Soient X et Y deux variables aléatoires d’un même espace probabilisé,

Si X et Y admettent chacune une espérance alors

pour tout réel a et b, aX + bY admet une espérance et E(aX + bY ) = aE(X) + bE(Y ).
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Proposition : (Croissance)

Soient X et Y deux variables aléatoires d’un même espace probabilisé,

➊ Si X ⩾ 0 et X admet une espérance alors E(X) ⩾ 0.

➋ Si X ⩽ Y et si X et Y admettent chacune une espérance alors E(X) ⩽ E(Y )

En effet :

Généralisation

Soient n ∈ N∗, (Xk)1⩽k⩽n une liste de variables aléatoires sur un même espace probabilisé
et (ak)1⩽k⩽n une liste de réels.

Si les Xk possèdent toutes une espérance alors E

(
n∑

k=1

akXk

)
=

n∑
k=1

akE(Xk)

En effet :

1.4.2 Théorème de transfert.

Théorème. (Théorème de transfert)

Soient X une variable aléatoire réelle discrète et f une fonction définie sur X(Ω),

Dans le cas fini. on note : n le cardinal de X(Ω) et X(Ω) = {xk | k ∈ [[1;n]] },

l’espérance de f(X) vérifie : E(f(X)) =

n∑
k=1

f(xk)P (X = xk).

Dans le cas dénombrable. on note : X(Ω) = {xn | n ∈ N }, ( avec les (xn) 2 à 2 distincts )

f(X) admet une espérance si, et seulement si,
∑
n∈N

f(xn)P (X = xn) est absolument convergente.

et alors l’espérance de f(X) vérifie : E(f(X)) =

+∞∑
n=0

f(xn)P (X = xn).

Rédaction.

• Cas fini.

X(Ω) est fini et f est définie sur X(Ω) donc (théorème de transfert) f(X) admet une espérance

et E(f(X)) =

n∑
k=1

f(xk)P (X = xk)

• Cas dénombrable.

➊ (f est définie sur X(Ω))

➋ f(X) admet une espérance si et seulement si,
∑
n⩾0

f(xn)P (X = xn) est absolument convergente.

On montre que :
∑
n⩾0

|f(xn)|P (X = xn) est convergente et on dit que f(X) admet une espérance.

➌ On calcule l’espérance E(f(X)) =

+∞∑
n=0

f(xn)P (X = xn)

Exemples : feuille Cours 5

Remarque : X peut admettre une espérance alors que f(X) non.

En effet :
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1.4.3 Variance d’une variable aléatoire discrète.

Définition

Soit X une variable aléatoire discrète.

Dire que X admet une variance signifie que X et (X − E(X))2 admettent une espérance.

on définit alors sa variance par : V (X) = E
(
(X − E(X))2

)
Remarques :

• Retenir que certaines variables aléatoires n’ont pas de variance.

• Dire qu’une variable aléatoire est réduite signifie que sa variance est égale à 1.

1.4.4 Formule de Kœnig-Huygens.

Lemme. (Exercice)

Soit X une variable aléatoire discrète,
Si X2 admet une espérance alors X admet une espérance.

Démonstration. (Voir feuille cours 5 2)

Théorème : (Formule de Kœnig-Huygens).

Soit X est une variable aléatoire discrète,

X admet une variance si, et seulement si, X2 admet une espérance
et alors

V (X) = E(X2)− (E(X))2

Démonstration. Faite au tableau.

Rédaction.

Cas fini.
”X(Ω) est fini donc X admet une variance et E(X) = · · · , E(X2) = · · · , et ainsi V (X) = E(X2)−E(X)2”

Cas dénombrable.

➊ ” X2 admet une espérance si, et seulement si,
∑
n⩾0

x2
nP (X = xn) est absolument convergente.”

On montre que :
∑
n⩾0

|x2
n|P (X = xn) est convergente et on dit que X admet une variance.

➋ On calcule les deux espérances E(X) =

+∞∑
n=0

xn P (X = xn) et E(X2) =

+∞∑
n=0

x2
n P (X = xn)

➌ On applique le théorème de Koenig-Huygens : X admet une variance et V (X) = E(X2)− E(X)2

Exemples : Feuille Cours 5 2
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1.4.5 Propriétés de la variance.

Proposition :

Quelle que soit la variable aléatoire X admettant une variance,
➀ V (X) ⩾ 0.

➁ Si V (X) = 0 alors P([X = m]) = 1 (où m = E(X)),
On dit que X est une variable quasi-certaine.

➂ Pour toute variable X admettant une variance et a et b deux réels, on a :

aX + b admet une variance et V (aX + b) = a2V (X)

Démonstrations.

1.4.6 Moments d’ordre supérieurs.

Définition :

Pour X une variable aléatoire et n un entier naturel,
Quand Xn admet une espérance on appelle E(Xn) le moment de X d’ordre n.

1.4.7 Ecart-type.

Définition :

Quand X admet une variance, l’écart-type d’une variable aléatoire X est le réel :
√

V (X)

On note souvent : σ =
√
V (X) ou σX =

√
V (X),

d’où la notation V (X) = σ2

Définition :

Pour X une variable aléatoire admettant une variance V (X) ̸= 0,

X∗ =
X − E(X)

σX

est appelée variable aléatoire centré réduite associée à X.

Démonstration.
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2
Indépendance.

2.1 Caractérisations.

Revoir la définition générale de l’indépendance.

Caractérisation. Indépendance de deux variables aléatoires discrètes.

Soient X et Y deux variables aléatoires discrètes,

Dire que X et Y sont indépendantes signifie que :

quel que soit le couple (x, y) ∈ R2 , P((X = x) ∩ (Y = y)) = P(X = x)× P(Y = y)

Caractérisation. Indépendance de n variables aléatoires discrètes.

Soient n un entier supérieur ou égal à 2 et (Xk)1⩽k⩽n une liste (finie) de variables aléatoires discrètes,

Dire que les Xk sont (mutuellement) indépendantes signifie que :

quel que soit la liste de réels (xk)1⩽k⩽n, P

(
n⋂

k=1

(Xk = xk)

)
=

n∏
k=1

P(Xk = xk)

2.2 Indépendance d’une suite de variables aléatoires.
(Déja vu dans le chapitre Probabilité).

Définition

Soit (Xn)n∈N une liste de variables aléatoires de (Ω,T , P ),

Dire que les variables de (Xn)n∈N sont (mutuellement) indépendantes signifie que :

toute liste finie extraite de la suite est (mutuellement) indépendante.

2.3 Propriétés de l’indépendance mutuelle
(Déja vu dans le chapitre Probabilité).

Théorème :

Soit (Xk)1⩽k⩽n une liste de variables aléatoires de (Ω,T , P ),

➊ Si X1, , . . . , Xn sont (mutuellement) indépendantes alors

toute sous-famille de (X1, . . . , Xn) l’est aussi.
➋ (Lemme des coalitions)

Soient f : Rp → R et g : Rn−p → R deux fonctions,

si X1, . . . , Xp, . . . , Xn sont (mutuellement) indépendantes alors

f(X1, . . . , Xp) et g(Xp+1, . . . , Xn) sont indépendantes.

➌ Soient f1, . . . , fn des fonctions de R dans R,
si X1, . . . , Xn sont (mutuellement) indépendantes alors

f1(X1), . . . , fn(Xn) sont (mutuellement) indépendantes.
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2.4 Théorèmes.

Théorème :

Soient X et Y deux variables aléatoires discrètes sur (Ω,T ,P),
➊ Si X et Y sont indépendantes et admettent des espérances alors

XY admet une espérance et E(XY ) = E(X)E(Y ).

➋ Si X et Y sont indépendantes et admettent des variances alors
X + Y admet une variance et V (X + Y ) = V (X) + V (Y )

On admet ➊ car il nous manque un théorème hors-programme, mais en admettant ➊ on peut démontrer ➋ .

Démonstration de ➋ :

Généralisation :

Soit (Xk)1<k⩽n une suite de variables aléatoires discrètes sur (Ω,T ,P),
➊ Si les Xk sont indépendantes et admettent des espérances alors

n∏
k=1

Xk admet une espérance et E

(
n∏

k=1

Xk

)
=

n∏
k=1

E(Xk)

➋ Si les Xk sont indépendantes et admettent des variances alors
n∑

k=1

Xk admet une variance et V

(
n∑

k=1

Xk

)
=

n∑
k=1

V (Xk)

Démonstration :

2.5 Stabilité des lois de Poisson.

Proposition.

Soient λ1, λ2 deux réels non nuls etX1 etX2 deux variables aléatoires (sur le même espace probablisé),

Si

{
X1 ↪→ P(λ1) , X2 ↪→ P(λ2)

et X1, X2 sont indépendantes
alors X1 +X2 ↪→ P(λ1 + λ2)

Démonstration : Voir feuille Cours 5 4

Généralisation .

Soient (Xk)1<k⩽N une liste de variables aléatoires, (λk)1<k⩽N une liste de réels non nuls,
(sur le même espace probablisé)

on note : X =

N∑
k=1

Xk et λ =

N∑
k=1

λk.

Si les Xk sont mutuellement indépendantes et si ∀k ∈ N, Xk ↪→ P(λk) alors X ↪→ P(λ)

Démonstration : Voir feuille Cours 5 4

2.6 Complément.

Théorème

Soit (Ak)1⩽k⩽n une famille d’événements,

Les événements Ak sont mutuellement indépendants
si, et seulement si, les variables aléatoires 1Ak

sont indépendantes.
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3
Lois finies usuelles.

3.1 Loi certaine.

Soit a un nombre réel.
Dire que X est la variable certaine égale à a signifie que X est la fonction constante X : Ω −→ R

ω 7−→ a

On a : X(Ω) = {a} et P([X = a]) = 1, E(X) = a V (X) = 0.

Remarque : Dire que X est ”quasi-certaine égale à a” signifie que P([X = a]) = 1

3.2 Loi de Bernoulli.

Définition :

Soit p un réel de ]0, 1[,

dire que X suit une loi de Bernoulli de paramètre p signifie que :


X(Ω) = {0, 1}
P([X = 0]) = 1− p
P([X = 1]) = p

On note : X ↪→ B(p) et on a : E(X) = p et V (X) = p(1− p)

Remarque : Si A est un événement de Ω alors 1A est une variable aléatoire et 1A ↪→ B(P(A))

Simulation avec une fonction Python :
def bernoulli(p):

if rd.random() <= p :

return 1

return 0

3.3 Loi uniforme.

Définition :

Soient a et b deux entiers relatifs tels que a ⩽ b,

Dire que X suit une loi uniforme sur [[a; b]] signifie que :


X(Ω) = [[a; b]]

∀i ∈ [[a; b]] , P([X = i]) =
1

b− a+ 1

On note : X ↪→ U ([[a; b]]), ( Attention : Ne pas confondre avec X ↪→ U ([a; b])

Proposition :

si X ↪→ U ([[a; b]]) alors E(X) =
a+ b

2

Démonstration. (A savoir faire)

Remarque : Savoir retrouver la variance (Voir la feuille Cours 5 2) V (X) =
(b− a)(b− a+ 2))

12
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Simulation avec une fonction Python (sans randint) :

def uniforme(a, b):

return floor( a+ (b-a+1)*rd.random() ) # floor importé de math

Remarque : Si X ↪→ U ([[1;n]]) alors


∀x < 1, FX(x) = 0

∀x ∈ [1, n], FX(x) =
⌊x⌋
n

∀x > n, FX(x) = 1

3.4 Loi binomiale.

Définition :
Soit n ∈ N∗ et p un réel de ]0, 1[, X une variable aléatoire,
Dire que X suit une loi binomiale de paramètres (n, p) signifie que : X(Ω) = [[0;n]]

∀k ∈ [[0;n]] , P([X = k]) =

(
n

k

)
pk(1− p)n−k

On note : X ↪→ B (n, p) et on a E(X) = np et V (X) = np(1− p) (démonstrations dans la feuille 5 2)

Dans quelle situation peut-on observer une loi binomiale ?

Si une expérience est constituée de n épreuves de Bernoulli identiques et indépendantes et si X désigne le
nombre de succès alors X suit la loi binomiale de paramètres (n, p) où p est la probabilité du succès.

Remarque : On se retrouve dans cette situation lors d’un tirage successif avec remise.

Simulation avec une fonction Python :

def binomiale(n,p):

x = 0

for k in range(n):

x += bernoulli(p)

return x

Proposition : Somme de n variables de Bernoulli identiques et indépendantes.

La somme de n variables de Bernoulli de paramètre p (mutuellement) indépendantes est une variable
aléatoire suivant la loi binomiale de paramètres (n, p)

Soient n un entier naturel non nuls et p un réel de l’intervalle ]0, 1[

Si


➀ X1, . . . , Xn sont indépendantes

➁ ∀i ∈ [[1;n]], Xi ↪→ B(p)

➂ X = X1 +X2 + · · ·+Xn

, alors X ↪→ B(n, p)

Stabilité de la loi binomiale. (Complément)

Soient X1 et X2 deux variables aléatoires, n1, n2 deux entiers naturels non nuls et p un réel de ]0, 1[

Si X1 et X2 sont indépendantes et si X1 ↪→ B(n1, p) et X2 ↪→ B(n2, p)

alors
X1 +X2 ↪→ B(n1 + n2 , p)

Généralisation .

Soient (Xk)1<k⩽N une liste de variables aléatoires, (nk)1<k⩽N une liste d’entiers naturels non nuls et

p un réel de ]0, 1[, on note : X =

N∑
k=1

Xk et n =

N∑
k=1

nk.

Si les Xk sont mutuellement indépendantes et si ∀k ∈ N, Xk ↪→ B(nk, p) alors X ↪→ B(n, p)
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4
Lois discrètes infinies usuelles.

4.1 Lois géométriques

4.1.1 Définition

Soient X une variable aléatoire réelle et p un réel de ]0, 1[,

Dire que X suit une loi géométrique de paramètre p signifie :

X(Ω) = N∗ ∀n ∈ N∗, P (X = n) = (1− p)n−1 p

Remarques :

• On note X ↪→ G (p).

• En notant q = 1− p, on a : ∀n ∈ N∗, P (X = n) = qn−1 p

Situation type. (Rédaction)

”Cette expérience est la succession d’un nombre indéfini d’épreuves de Bernoulli identiques et indépendantes,
le succès est ............. la probabilité du succès vaut p,

X est le rang du premier succès donc X ↪→ G (p).”

4.1.2 Fonction de répartition.

Description.

Soit F la fonction de répartition d’une variable X suivant une loi géométrique de paramètre p,

➊ Pour tout n < 1, F (n) = 0

➋ Pour tout n ∈ N∗, F est constante sur [n;n+ 1[ et F (n) = 1− qn

Remarques : (Feuille Cours 5 3)

• La démonstration (à refaire) est le calcul :

n∑
k=1

qk−1 p = 1− qn,

mais pour le retrouver il est plus simple de remarquer :

[X > n] : ”avoir des échecs au cours des n premières épreuves”, donc P (X > n) = qn

• Si X ↪→ G (p) alors ∀n ∈ N∗, P (X ⩽ n) = 1− qn et P (X > n) = qn

4.1.3 Espérance et variance.

Proposition.

Soit X un variable aléatoire réelle,
si X suit une loi géométrique de paramètre p alors X admet une espérance et une variance et

E(X) =
1

p
et V (X) =

q

p2

Démonstration. (Feuille Cours 5 3)
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4.1.4 Loi sans mémoire.

Proposition

Soient X une variable aléatoire réelle et p un réel de ]0, 1[,
si X suit une loi géométrique de paramètre p alors

∀(k, n) ∈ N× N∗, P
(
[X = n+ k]

∣∣ [X > k]
)
= P ( [X = n] )

Démonstration. (Feuille Cours 5 3)

Remarques : (interprétation)

• En se plaçant dans la situation type : [X > k] : ” Pas de succès pendant les k premiers lancers ”

on observe les n prochains lancers le rang du premier succès suit la loi G(p)
• Si on n’observe l’expérience de 1 à k et qu’il n’y a pas eu de succès alors la loi du temps d’attente du premier
succès est la même qu’au début.

• Encore une autre interprétation :
On fixe n ∈ N∗, et on note Y = X − n,

Sachant (X > n) (”il n’y a eu que des échecs du rang 1 au rang n”),

Y est alors le temps d’attente du premier succès à partir du rang n+ 1,

La proposition a montré que : la loi conditionnelle sachant (X > n) de Y est la loi G (p)

• Certains préfèrent la proposition suivante : (nous la retrouverons avec la loi exponentielle)

∀(k, n) ∈ N× N∗, P
(
[X > n+ k]

∣∣ [X > k]
)
= P ( [X > n] )

4.1.5 Simulation numérique.

Simulation avec une fonction Python :

def geometrique(p):

x = 1

while rd.random() > p :

x += 1

return x

4.2 Loi de Poisson

4.2.1 Définition

Définition.

Soient X une variable aléatoire réelle et λ un réel strictement positif,

Dire que X suit une loi de Poisson de paramètre λ signifie que :

X(Ω) = N et ∀n ∈ N, P (X = n) =
λn

n!
e−λ

Remarques :

• on note : X ↪→ P(λ)

• Siméon Denis Poisson (1781-1840)

• Ne pas oublier de préciser que λ ∈ R∗
+ au début de cette définition.

• Savoir vérifier rapidement que c’est bien une loi de probabilité .

4.2.2 Espérance et variance.

Proposition.

Soient X une variable aléatoire réelle et λ un réel strictement positif,

Si X suit une loi de Poisson de paramètre λ alors, admet une espérance et une variance et
E(X) = λ et V (X) = λ

Démonstration : feuille Cours 5 3
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4.2.3 Approximation de lois binomiales par des lois de Poisson.

Proposition.

Soient X une variable aléatoire réelle et λ un réel strictement positif,

Pour tout k ∈ N, (
n

k

)(
λ

n

)k (
1− λ

n

)n−k

−→
n→+∞

λk

k!
e−λ

En posant pn =
λ

n
on obtient : (

n

k

)
pkn (1− pn)

n−k −→
n→+∞

λk

k!
e−λ

Démonstration : feuille Cours 5 3

Approximation

Quand n ⩾ 30 et p ⩽ 0,1 on peut approcher la loi binomiale B(n, p) par la loi de Poisson P(np)

4.2.4 Simulation numérique.

Approximation

Quand n ⩾ 30 et
λ

n
⩽ 0,1 on peut approcher par la loi de Poisson P(λ) par la loi binomiale B

(
n,

λ

n

)

Remarque : n ⩾ 30 et
λ

n
⩽ 0,1 équivaut à n ⩾ max(30, 10λ)

Simulation avec une fonction Python :

def loi_poisson(lbd): # attention lambda est un mot réservé du langage Python

n = int(max(10*lbd, 30)) # on choisit n pour avoir n >= 30 et p <= 0.1

p = lbd/n

return binomiale(n, p)

Il existe aussi rd.poisson(lbd) du module random.
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