Table des matières

1	Définitions
2	Sommes de Riemann
3	Propriétés de l'intégrale d'une fonction continue. 3.1 Relation de Chasles. 3.2 Linéarité. 3.3 Croissance de l'intégrale. 3.4 Valeur moyenne.
4	3.5 Intégrales et valeurs absolues. Théorème fondamental 4.1 Définition d'une primitive
5	4.3 Calcul de primitives
6	Positivité stricte.
7	Calculs d'intégrales. 7.1 Intégration par parties

1

Définitions

Dans ce cours I désigne toujours un intervalle non trivial de \mathbb{R} .

Définition:

Soit f une fonction de I dans \mathbb{R} et a et b deux réels de I vérifiant a < b, L'intégrale de f sur le segment [a,b] est l'aire algébrique sous la courbe.

L'intégrale existe quand cette aire est bien définie.

Lorsque f est continue sur [a, b] l'intégrale est bien définie.

Lorsque f est continue par morceaux sur [a,b) alors l'intégrale est bien définie.

 \bullet Illustration graphique :

Si a < b et f est continue par morceaux sur [a, b] et à valeurs **positives** sur [a, b] alors

$$\operatorname{Aire}\Big(\big\{\ M(x,y)\in\mathcal{P}\ \big|\ a\leqslant x\leqslant b\quad \text{et}\quad 0\leqslant y\leqslant f(x)\ \big\}\Big)=\int_a^b f(x)\,dx \qquad \text{(u.a)}$$

Si a < b et f est continue par morceaux sur [a, b] et à valeurs **négatives** sur [a, b] alors

$$\int_a^b f(t)\,dt = -{\rm Aire}(D) \qquad {\rm (en~u.a)}$$

où

$$D = \left\{ \begin{array}{ll} M(x,y) \in \mathcal{P} \ \middle| \ a \leqslant x \leqslant b \quad f(x) \leqslant y \leqslant 0 \end{array} \right\}$$

Si a < b et f est continue par morceaux sur [a, b] alors

$$\int_{a}^{b} f(t) dt = Aire(D^{+}) - Aire(D^{-})$$

Sommes de Riemann

Définition : (Sommes de Riemann)

Soit f une fonction de I dans \mathbb{R} et a et b deux réels de I, on définit sur \mathbb{N}^* les suites (G_n) et D_n par :

$$G_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) \quad \text{et} \quad D_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a+k\frac{b-a}{n}\right)$$

Théorème:

Si
$$f$$
 est continue sur $[a,b]$ alors la suite (G_n) converge vers $\int_a^b f(x) dx$

Remarques:

- Les énoncés précédents sont vrais pour a et b quelconques dans I, (a < b, a > b et a = b)
- En notant pour k allant de 0 à n, $x_k = a + k \frac{b-a}{n}$, $\underbrace{\frac{1}{b-a} \int_a^b f(x) \, dx}_{\text{valeur moyenne de } f} = \lim_{n \to +\infty} \underbrace{\frac{1}{n} \sum_{k=0}^{n-1} f(x_k)}_{\text{moyenne arithmétique de valeurs de } f$
- Ce théorème est à la base de la **méthode** d'approximation dite **des rectangles** (Voir la feuille info_2).
- En pratique on applique souvent la proposition suivante :

Si
$$u_n = \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$
 avec f une fonction continue sur $[0,1]$ alors (u_n) converge vers : $\int_0^1 f(x) dx$

Propriétés de l'intégrale d'une fonction continue.

3.1 Relation de Chasles.

Théorème:

Soit f une fonction continue sur un intervalle I contenant $a,\,b,\,c.$ Alors :

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

Généralisation:

Soit f une fonction continue sur un intervalle I, n un entier non nul et a_1,a_2,a_3,\ldots,a_n une suite finie d'éléments de I.

$$\int_{a_1}^{a_n} f(x) dx = \sum_{k=2}^n \int_{a_{k-1}}^{a_k} f(x) dx = \sum_{k=1}^{n-1} \int_{a_k}^{a_{k+1}} f(x) dx$$

3.2 Linéarité.

Linéarité:

Soient f et g deux fonctions continues sur un intervalle I contenant a et b. Alors pour tout réel λ et μ :

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

Généralisation:

Soient n un entier naturel non nul, $f_1, f_2, \dots f_n$ des fonctions continues sur un intervalle I, $(a,b) \in I^2$ et $(\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n) \in \mathbb{R}^n$.

$$\int_{a}^{b} \left(\sum_{k=1}^{n} \lambda_{k} f_{k}(x) \right) dx = \sum_{k=1}^{n} \lambda_{k} \left(\int_{a}^{b} f_{k}(x) dx \right)$$

3.3 Croissance de l'intégrale.

Théorème:

Soit f une fonction continue sur I,

Si
$$a \le b$$
 sont deux éléments de I et si $\forall x \in [a,b], \ f(x) \ge 0$ alors $\int_a^b f(x) \, dx \ge 0$

En pratique : Ce n'est pas une équivalence et il ne faut pas oublier le quantificateur :

On sait que :
$$\forall x \in [a, b]$$
, $f(x) \ge 0$ donc $\int_a^b f(x) dx \ge 0$

Corollaires:

① Soient f et g deux fonctions continues sur I,

Si $a \le b$ sont deux éléments de I et si $\forall x \in [a,b], f(x) \le g(x)$ alors

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx$$

② Soient f, g et h trois fonctions continues sur I,

Si $a \le b$ sont deux éléments de I et si $\forall x \in [a,b], \quad h(x) \le f(x) \le g(x)$ alors

$$\int_a^b h(x) \, dx \leqslant \int_a^b f(x) \, dx \leqslant \int_a^b g(x) \, dx$$

 $\$ 3 Soit f une fonction continue sur I,

Si a et b sont deux éléments distincts de I et si $\exists (m, M) \in \mathbb{R}^2 : \forall x \in I, m \leqslant f(x) \leqslant M$

alors

$$m \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leqslant M$$

3.4 Valeur moyenne.

Définition et proposition :

Soit f une fonction continue sur I et a et b deux éléments de I tels que a < b

On appelle valeur moyenne de f sur [a,b] le réel :

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

La valeur moyenne est une valeur de la fonction f.

3.5 Intégrales et valeurs absolues.

Proposition: (Inégalité triangulaire)

Soient f continue sur I, a et b deux réels de I vérifiant $a \leq b$.

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx$$

Proposition:

Soient f continue sur I, a et b deux réels de I.

$$\left| \int_{a}^{b} f(t) dt \right| \leq \sup_{t \in [a,b]} |f(t)| |b - a|$$

5

Remarques:

• Ici comme la fonction f est continue $\sup_{t \in [a,b]} |f(t)| = \max_{t \in [a,b]} |f(t)|$ la borne supérieure est atteinte.

• Si M est un majorant de |f| sur I alors $\left|\int_a^b f(t)\,dt\right|\leqslant M\,|b-a|$

Théorème fondamental

4.1 Définition d'une primitive

Définition (Primitive d'une fonction sur un intervalle)

Soit f une fonction définie sur un intervalle I.

Dire que F est une primitive de f sur I signifie que :

 \bullet F est dérivable sur I et

 $\forall x \in I, \quad F'(x) = f(x).$

Remarque : "F est une primitive de f sur I, si et seulement si, f est la dérivée de F sur I".

4.2 Théorème

Théorème. (Théorème fondamental de l'analyse)

Soient f une fonction définie sur un intervalle I et a un élément de I,

si f est continue sur I alors la fonction $x \mapsto \int_a^x f(t) dt$ est une primitive de f sur I.

c'est l'unique primitive de f qui s'annule en a.

Illustration dans la feuille Act_17_ter

Conséquences

- ullet Toute fonction continue sur un intervalle I possède des primitives sur I.
- ullet Soient f une fonction continue sur un intervalle I et F une primitive de f sur I

Pour tout
$$(a,b) \in I$$
, $\int_a^b f(x) dx = F(b) - F(a)$

On note en pratique (plus facile de vérifier sous cette forme la primitive) :

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \left[F(x) \right]_{a}^{b}$$

4.3 Calcul de primitives.

Soit I un intervalle et f une fonction continue sur I.

Pour trouver une expression F(x) permettant de définir une primitive F de f sur I, il suffit de fixer un élément a quelconque de I et de calculer pour un x quelconque l'intégrale :

$$\int_{a}^{x} f(t) dt$$

Parité et périodicité.

5.1 Intégrales et parité.

Proposition.

Soient f une fonction continue sur un ensemble D centré en 0 et $a \in D$,

Si f est **paire** et si $[-a, a] \subset D$ alors

$$\int_{-a}^{a} f(t) \, dt = 2 \int_{0}^{a} f(t) \, dt$$

Proposition.

Soient f une fonction continue sur un ensemble D centré en 0 et $a \in D$,

Si f est **impaire** et si $[-a, a] \subset D$ alors

$$\int_{-a}^{a} f(t) \, dt = 0$$

Voir feuille_Act_17

5.2 Intégrales et périodicité.

Proposition.

Soit f une fonction continue sur \mathbb{R} et périodique de période T (T > 0).

 \bullet pour tout $a \in \mathbb{R}$,

$$\int_{a}^{a+T} f(t) \, dt = \int_{0}^{T} f(t) \, dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \, dt = \int_{a-\frac{T}{2}}^{a+\frac{T}{2}} f(t) \, dt$$

2 pour tout $n \in \mathbb{N}$,

$$\int_a^{a+nT} f(t) dt = n \int_0^T f(t) dt$$

Proposition.

Soit f une fonction continue sur \mathbb{R} et périodique de période T (T>0). pour tout $a\in\mathbb{R},$

$$\int_{a+T}^{b+T} f(t) dt = \int_a^b f(t) dt$$

Voir feuille_Act_17

6

Positivité stricte.

Théorème :

Soient a et b deux réels vérifiant a < b et $f : [a, b] \mapsto \mathbb{R}$ Si f est continue sur $[a, b], \ f \geqslant 0$ sur $[a, b], \ \text{et} \int_a^b f(x) \, dx = 0$ alors f = 0 sur [a, b].

Démonstration.

${\bf Corollaire}:$

Soit
$$a < b$$
 et $f : [a, b] \to \mathbb{R}$
Si f est continue sur $[a, b], f \ge 0$ sur $[a, b],$ et $f \ne 0$ alors $\int_a^b f(x) \, dx > 0$.

 $Illustration\ graphique.$

Calculs d'intégrales.

7.1 Intégration par parties.

Théorème:

Si u et v sont deux fonctions de classe C^1 sur un segment [a,b], alors :

$$\int_{a}^{b} u(t) v'(t) dt = \left[u(t) \ v(t) \right]_{a}^{b} - \int_{a}^{b} u'(t) v(t) dt$$

7.2 Intégration par changement de variable.

I et J sont des intervalles de \mathbb{R} .

Théorème : (Changement de variable $x = \varphi(t)$).

Soient $f: I \to \mathbb{R}$ une fonction continue, $\varphi: J \to I$ de classe C^1 a et b deux réels de J.

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$$

Proposition. (Changement de variable affine $x = \alpha t + \beta$).

Soit α , β deux réels avec $\alpha \neq 0$ et f une fonction telle que $t \mapsto f(\alpha t + \beta)$ est définie sur le segment [a,b]. Si f est continue sur $[\alpha a + \beta, \alpha b + \beta]$ alors :

$$\int_{a}^{b} f(\alpha t + \beta) dt = \int_{\alpha a + \beta}^{\alpha b + \beta} f(x) \times \frac{1}{\alpha} dx \qquad \int_{\alpha a + \beta}^{\alpha b + \beta} f(x) dx = \int_{a}^{b} f(\alpha t + \beta) \alpha dt$$