
1
Applications linéaires.

Dans ce cours E et F désignent deux espaces vectoriels quelconques sur K. (K = R ou C)

1.1 Exemples.

• Les applications linéaires de R dans R sont les fonctions f de R dans R vérifiant :

il existe a ∈ R tel que : f : R −→ R
x 7−→ ax

Remarque : Ce sont les seules fonctions de R dans R qui possèdent la propriété :

∀(x1, x2) ∈ R2, ∀(α, β) ∈ R2, f(αx1 + βx2) = αf(x1) + βf(x2)

• ”Linéarité de l’intégrale”.
Soient a et b deux réels tels que a < b, on considère l’application : C0([a, b]) −→ R

f 7−→
∫ b

a

f(t) dt

En notant Ψ cette application on a :

∀(f1, f2) ∈ C0([a, b])2, ∀(α, β) ∈ R2, Ψ(αf1 + βf2) = αΨ(f1) + βΨ(f2)

• ”Linéarité de l’espérance”.
Soit (Ω,P(Ω),P) un espace probabilisé, on note V l’ensemble des variables aléatoires sur Ω,
on considère l’application définie dans le cours de probabilité :

E : V −→ R
X 7−→ E(X)

Cette application E vérifie : ∀(X1, X2) ∈ V 2, ∀(α, β) ∈ R2, E(αX1 + βX2) = αE(X1) + β E(X2)

• ”Le passage aux coordonnées dans une base est linéaire”.
Soit E un espace vectoriel de dimension n et B une base de E, E −→ Mn,1(R)

u 7−→ CoordB(u)
Cette application CoordB vérifie :

∀(u1, u2) ∈ E2, ∀(α, β) ∈ R2, Coord(αu1 + βu2) = αCoordB(u1) + β CoordB(u2)

• ”Le passage à la dérivée est linéaire”.
On considère l’application : C∞(R) −→ C∞(R)

f 7−→ f ′

En notant d cette application on a :

∀(f1, f2) ∈ C∞(R)2, ∀(α, β) ∈ R2, d(αf1 + βf2) = αd(f1) + β d(f2)

• ”X 7−→ AX”.

Soient p et n deux entiers naturels non nuls et A une matrice de Mn,p(R)
On considère l’application :

Mp,1(R) −→ Mn,1(R)
X 7−→ AX

En notant Ψ cette application on a :

∀(X1, X2) ∈ Mn,1(R)2, ∀(α, β) ∈ R2, Ψ(αX1 + βX2) = αΨ(X1) + βΨ(X2)
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1.2 Définitions et vocabulaire.

Définition :

Soit f une application de E dans F .

Dire que f est une application linéaire signifie que :

∀(α, β) ∈ K2, ∀(u, v) ∈ E2, f (αu+ βv) = αf(u) + βf(v)

Vocabulaire et notations :

• On note : L (E, F ) l’ensemble des applications linéaires de E dans F .

• (Lorsque F = K). On appelle forme linéaire sur E les applications linéaires de E dans K.

• (Lorsque F = E). On appelle endomorphisme de E les applications linéaires de E dans E.

• On note L (E) l’ensemble des endomorphismes de E.

• Les applications linéaires bijectives sont appelées isomorphismes.

• Les endomorphismes bijectifs sont appelés automorphismes.

• On note GL(E) l’ensemble des automorphismes de E. (Groupe Linéaire)

Des cas particuliers importants.

L’application nulle de E dans F est linéaire.

L’application identité de E est un endomorphisme de E. (c’est même un isomorphisme)

L’application CoordB définie dans le cours sur les espaces vectoriels est un isomorphime.

Autres exemples dans la feuille Cours 6.

1.3 Propriétés.

Propositions :

➊ Si f est linéaire de E dans F , on a alors : f (0E) = 0F

➋ Si f est linéaire de E dans F ,

pour tout (u1, . . . , un) ∈ En et (λ1, . . . , λn) ∈ Kn , f

(
n∑

i=1

λiui

)
=

n∑
i=1

λif(ui)

Démonstration : feuille Cours 6

Remarque :

Pour démontrer qu’une application de E dans F n’est pas linéaire, on montre au choix :

➊ f (0E) ̸= 0F

➋ En prenant α =.......... dans K et u =.......... dans E, on a f(αu) ̸= αf(u)

➌ En prenant u =.......... dans E et v =.......... dans E, on a f(u+ v) ̸= f(u) + f(v)

Exemples dans la feuille Cours 6.
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2
Opérations et applications linéaires.

2.1 Combinaison linéaire.

Des précisions sur l’espace vectoriel FE où E et F désignent deux espaces vectoriels.

Définition :
Pour f une application E dans F et α un scalaire on définit les applications :

αf : E −→ F
u 7−→ αf(u)

f + g : E −→ F
u 7−→ f(u) + g(u)

Remarques :

• On admet que FE muni de ces deux lois est un espace vectoriel.

• Le vecteur nul de FE est la fonction nulle, plus précisément c’est l’application E −→ F
u 7−→ 0F

Théorème :

Soient f et g deux applications de E dans F ,

Si f et g sont dans L (E,F ) et α et β deux scalaires alors αf + βg ∈ L (E,F ) .

Démonstration :

Soient (α, β) ∈ K2 et (f, g) ∈ L (E,F )2, on note h = αf + βg,

Soient (λ, µ) ∈ K2 et (u, v) ∈ E2,

h(λu+ µv) = αf(λu+ µv) + βg(λu+ µv) (Définitions des opérations ci-dessus)

= αλf(u) + αµf(v) + βλg(u) + βµg(v) (f et g sont linéaires)

= λ(αf(u) + βg(u)) + µ(αf(v) + βg(v))

= λh(u) + µh(v)

donc h = αf + βg ∈ L (E,F )

On a bien démontré que : si f ∈ L (E,F ) et g ∈ L (E,F ) alors αf + βg ∈ L (E,F )

Remarques :

• Le vecteur nul étant l’application nulle de E dans F , L (E,F ) est un sous-espace vectoriel de FE .

• Plus généralement : Toute combinaison linéaire d’applications linéaires est une application linéaire.

Si pour tout k ∈ [[1;n]], λk ∈ K et fk ∈ L (E,F ) alors

n∑
k=1

λkfk ∈ L (E,F )
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2.2 Composition.

Théorème :

Soient E, F et G trois espaces vectoriels et f : E → F et g : F → G.

Si f ∈ L (E,F ) et g ∈ L (F,G) alors g ◦ f ∈ L (E,G)

Démonstration :
On suppose f ∈ L (E,F ) et g ∈ L (F,G),
Soient (α, β) ∈ K2 et (u, v) ∈ E2,

g ◦ f(αu+ βv) = g(αf(u) + βf(v)) car f ∈ L (E,F )

= α g(f(u)) + β g(f(v)) car g ∈ L (F,G)

= α g ◦ f(u) + β g ◦ f(v)

donc g ◦ f ∈ L (E,G)

Remarque : Plus généralement : Toute composée d’applications linéaires est une application linéaire.

Propriétés :

➊ Si g ∈ L (F,G), (α1, α2) ∈ K2, f1 ∈ L (E,F ) f2 ∈ L (E,F )

alors g ◦ (α1f1 + α2f2) = α1 g ◦ f1 + α2 g ◦ f2

➋ Si g ∈ L (E,F ), (α1, α2) ∈ K2, f1 ∈ L (F,G) f2 ∈ L (F,G)

alors (α1f1 + α2f2) ◦ g = α1 f1 ◦ g + α2 f2 ◦ g

Démonstration :

2.3 Puissance d’un endomorphisme

Définition :

Soit f ∈ L (E), on définit pour n ∈ N la notation fn par la relation de récurrence :

f0 = IdE ∀n ∈ N, fn+1 = fn ◦ f

Plus simplement : fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n applications

Théorème :

Soient E et F deux espaces vectoriels, f : E → F et n ∈ N.
Si f ∈ L (E,F ) alors fn ∈ L (E,F )

Propriétés :

Soit f ∈ L (E),

pour tout (n1, n2) ∈ N2, fn1+n2 = fn1 ◦ fn2 et (fn1)n2 = fn1n2
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2.4 Réciproque d’un isomorphisme.

Théorème :

La réciproque d’une bijection linéaire est linéaire.

Démonstration :
On suppose connâıtre f une application linéaire bijective de E dans F

Soient (v1, v2) ∈ F 2 et (α1, α2) ∈ F2,

comme f est bijective on peut définir u1 = f−1(v1) et u2 = f−1(v2),

ce qui nous donne : v1 = f(u1) et v2 = f(u2).

f−1(α1v1 + α2v2) = f−1(α1f(u1)α2f(u2))

= f−1
(
f(α1u1 + α2u2)

)
car f est linéaire

= α1u1 + α2u2 car f−1 ◦ f = IdE

= α1f
−1(v1) + α2f

−1(v2)

Ce qui achève la démonstration

Autrement dit sachant que la réciproque d’une bijection est une bijection :

Si f est un isomorphisme de E dans F alors f−1 est un isomorphisme de F dans E.

Remarque : Si f est un automorphisme alors pour tout n ∈ N , on note f−n l’automorphisme
(
f−1

)n
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3
Noyau et Image.

3.1 Définitions.

Définition :

Etant donné une application linéaire f : E → F , on appelle :

• noyau de f , le sous-ensemble de E suivant : ker(f) = {u ∈ E | f(u) = 0F }
• image de f , le sous-ensemble de F suivant : Im(f) = { f(u) | u ∈ E}

Remarques :

• ker(f) ⊂ E et Im(f) ⊂ F .

• ker(f) est l’ensemble des antécédents de 0F par f . Im(f) est l’image directe de E par f .

• Im(f) = { v ∈ F | ∃u ∈ E : f(u) = v }
• Si f est l’application nulle alors Im(f) = {0F } et ker(f) = E.

• Si f est l’application identité de E alors Im(f) = E et ker(f) = {0E}.

3.2 Propriétés.

Théorème :

Si f est une application linéaire de E dans F alors :

➊ ker(f) est un sous-espace vectoriel de E ➋ Im(f) est un sous-espace vectoriel de F .

Démonstrations :
➊ • ker(f) ⊂ E,

• f(0E) = 0F donc 0E ∈ ker(f)

• Soient (α, β) ∈ K2 et (u, v) ∈ ker(f)2,

f(αu+ βv) = αf(u) + βf(v) car f ∈ L (E,F )

= α0F + β0F car u, v ∈ ker(f)

= 0F

donc αu+ βv ∈ ker(f)

En conclusion : ker(f) est un sous-espace vectoriel de E

➋ • Im(f) ⊂ F ,

• 0F = f(0E) donc 0F ∈ Im(f)

• Soient (α, β) ∈ K2 et (v1, v2) ∈ Im(f)2,

on note v1 = f(u1) et v2 = f(u2) avec u1, u2 ∈ E,

αv1 + βv2 = αf(u1) + βf(u2)

= f(αu1 + βu2) car f ∈ L (E,F )

∈ Im(f)

En conclusion : Im(f) est un sous-espace vectoriel de F
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3.3 Image et surjectivité.

Proposition : Pour f ∈ L(E,F ), f est surjective si, et seulement si, Im(f) = F .

Proposition :

Soit f ∈ L(E,F ), Si (e1, · · · , en) est une base de E alors, Im(f) = Vect(f(e1), · · · , f(en)).

Démonstration 1 : (faite en classe)
Raisonnons par double inclusion

⊃ Sachant que pour tout i ∈ [[1, n]], f(ei) ∈ Im(f) et que Im(f) est un sous-espace vectoriel de F ,

on a bien Vect(f(e1), · · · , f(en)) ⊂ Im(f)

⊂ Soit y ∈ Im(f), on note y = f(x) avec x =

n∑
i=1

xiei,

comme f est linéaire, il vient y =

n∑
i=1

xif(ei), et ainsi y ∈ Vect(f(e1), · · · , f(en))

on a bien Im(f) ⊂ Vect(f(e1), · · · , f(en))
En conclusion :

Im(f) = Vect(f(e1), · · · , f(en))

Démonstration 2 : Une autre démonstration plus efficace mais moins élémentaire.

Im(f) = {f(u) | u ∈ E }

=

{
f

(
n∑

k=1

xiei

)
| (x1, . . . , xn) ∈ Kn

}

=

{
n∑

k=1

xif (ei) | (x1, . . . , xn) ∈ Kn

}
( car f est linéaire )

= Vect(f(e1), · · · , f(en))

3.4 Noyau et injectivité.

Théorème :

Soit f une application linéaire de E dans F ,

f est injective si, et seulement si, ker(f) = { 0E}

Démonstration 1 (Faite au tableau)
⇒ On suppose que f est injective.

Pour x ∈ E,

x ∈ ker(f) ⇐⇒ f(x) = 0F

⇐⇒ f(x) = f(0E)

⇐⇒ x = 0E (car f est injective)

donc ker(f) = {0E} ■.

Remarque : au tableau, nous n’avons pas fait un raisonnement par équivalence.

⇐ On suppose que ker(f) = {0E}.
Soient (x1, x2) ∈ E2 tel que f(x1) = f(x2),

on a alors : f(x1)− f(x2) = 0F , et comme f est linéaire il vient f(x1 − x2) = 0F

d’où (x1 − x2) ∈ ker(f) et en utilisant l’hypothèse ker(f) = {0E} il vient x1 − x2 = 0E

ou encore x1 = x2.

donc f est injective ■.
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Démonstration 2
Une autre approche par équivalence : (ce n’est pas la démonstration ”classique” que j’ai faite au tableau.)

f est injective ⇐⇒
[
∀(u, v) ∈ E2, f(u) = f(v) ⇐⇒ u = v

]
⇐⇒

[
∀(u, v) ∈ E2, f(u)− f(v) = 0F ⇐⇒ u = v

]
⇐⇒

[
∀(u, v) ∈ E2, f(u− v) = 0F ⇐⇒ u− v = 0E

]
car f linéaire

⇐⇒
[
∀u ∈ E, f(u) = 0F ⇐⇒ u = 0E

]
⇐⇒

[
∀u ∈ E, u ∈ ker(f) ⇐⇒ u = 0E

]
⇐⇒ ker(f) = {0E}

f est injective si, et seulement si, ker(f) = {0E}
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4
Image d’une base.

Soient E et F deux K espaces vectoriels de dimension finie.

Théorème :

Soit B = (e1, e2, . . . , en) une base de E ,
quel que soit (v1, v2, . . . , vn) une famille de vecteurs de F , il existe une et une seule application
linéaire f de E dans F vérifiant :

∀i ∈ [[1;n ]], f(ei) = vi

Autrement dit : Une application linéaire est entièrement définie par l’image d’une base.
Extrait du programmme : ”Détermination d’une application linéaire par l’image d’une base.”

Démonstration : (ce qui a été fait au tableau)

Idée : Comme f est linéaire alors si u =

n∑
k=1

xiei alors f(u) =

n∑
k=1

xif(ei)

La seule connaissance des coordonnées de u et les f(ei) permet de calculer f(u).

Existence : L’application suivante convient : (ie : elle est linéaire et vérifie ∀i f(ei) = vi)

f : E −→ F

u 7−→
n∑

k=1

xivi où

x1

...
xn

 = CoordB(u)

Au tableau j’ai défini f : E −→ F

u 7−→
n∑

k=1

xif(ei)

c’est une autre approche mais c’est peut-être plus simple avec les vi.

Unicité : Supposons connâıtre deux applications f1 et f2 qui conviennent.
(ie : elles sont linéaires et vérifient ∀i f(ei) = vi)

Soit u ∈ E, on note u =

n∑
i=1

xiei,

f1(u) = f1

(
n∑

i=1

xiei

)

=

n∑
i=1

xif1(ei) car f1 ∈ L (E,F )

=

n∑
i=1

xif2(ei) car f1(ei) = f2(ei) = vi

= f2

(
n∑

i=1

xiei

)
car f2 ∈ L (E,F )

= f2(u)

Donc ∀u ∈ E, f1(u) = f2(u) donc f1 = f2 ■
Remarque :
Cette partie de la démonstration a été présentée différemment au tableau, seule la présentation est différente.
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Théorème :

Soit f ∈ L (E,F ) et B une base de E.

f est bijective si, et seulement si, l’image par f de la base B est une base de F .

Démonstration :
On note B = (e1, ..., en) et on désigne alors par f(B) la famille (f(e1), ..., f(en))

Montrons séparément :

➊ f injective ⇐⇒ f(B) est libre et ➋ f surjective ⇐⇒ f(B) est génératrice de F .

Démo de ➊ (je fais comme au tableau mais on peut aussi faire une double implication)

f est injective ⇐⇒ ker(f) = {0E}

⇐⇒ ∀u ∈ E, f(u) = 0F ⇐⇒ u = 0E

⇐⇒ ∀(x1, ..., xn) ∈ Kn, f

(
n∑

k=1

xiei

)
= 0F ⇐⇒

n∑
k=1

xiei = 0E

⇐⇒ ∀(x1, ..., xn) ∈ Kn,

n∑
k=1

xif (ei) = 0F︸ ︷︷ ︸
car f est linéaire

⇐⇒ ∀i ∈ [[1, n]], xi = 0︸ ︷︷ ︸
car (e1, ..., en) est libre

On retrouve la définition de la liberté de f(B).

f est injective si, et seulement si, f(B) est libre

Démo de ➋ (Ici je suis plus efficace qu’au tableau en utilisant le résultat important donnant Im(f) = Vect(f(B)) )

f est surjective ⇐⇒ Im(f) = F

⇐⇒ Vect(f(B)) = F

f est surjective si, et seulement si, f(B) est une famille génératrice de F

En conclusion :

f est bijective si, et seulement si, f(B) est une base de F

Conséquence :

Soit f ∈ L (E,F ) avec E un espace de dimension finie.

Si f est bijective alors F est de dimension finie et dim(E) = dim(F ).

En effet : On vient de montrer que si f est bijective alors f(B) est une base de F .
Or le nombre de vecteurs de f(B) est égal à dim(E) donc dim(E) = dim(F ).

Théorème : (Quand E et F ont la même dimension)

Soit f ∈ L (E,F ) avec dim(E) = dim(F ).

➊ f est injective si, et seulement si, f est bijective.

➋ f est surjective si, et seulement si, f est bijective.

Démonstration : (Il suffit de montrer : f est injective ⇐⇒ f est surjective)

On suppose que dim(E) = dim(F ) = n, on sait donc que f(B) possède n vecteurs.
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On utilise deux fois la propriété fondamentale (noté (∗)) :

”Dans un espace vectoriel de dimension n, toute famille libre (ou génératrice) de n vecteurs est une base”.

f est injective ⇐⇒ f(B) est une famille libre (vue dans la démonstration du th. précédent)

(∗) ⇔

⇐⇒ f(B) est une base de F

(∗) ⇔

⇐⇒ f(B) est une famille génératrice de F

⇐⇒ f est surjective (vue dans la démonstration du th. précédent)

En conclusion : Lorsque dim(E) =dim(F ) on a

f est bijective ⇐⇒ f est injective et f est bijective ⇐⇒ f est surjective)

En pratique :

• quand dim(E) = dim(F ), il suffit de montrer que f est injective pour montrer qu’elle est bijective.

• quand dim(E) = dim(F ), il suffit de montrer que f est surjective pour montrer qu’elle est bijective.

Théorème : En particulier et le plus utile en pratique.

Soit E un espace de dimension finie et f ∈ L (E) (un endomorphisme de E).

➊ f est injective si, et seulement si, f est bijective.

➋ f est surjective si, et seulement si, f est bijective.

En effet : C’est juste un cas particulier du théorème précédent dans le cas F = E.

Remarque : Attention ce théorème est faux en dimension infinie comme le montre les 2 exemples suivants.

- L’application linéaire f : R[X] −→ R[X]
P 7−→ XP

est injective, mais non surjective.

En effet :
• Soit P ∈ R[X],

P ∈ ker(f) ⇐⇒ f(P ) = 0R[X]

⇐⇒ XP = 0R[X]

⇐⇒ P = 0R[X] intégrité car X ̸= 0R[X]

donc ker(f) = {0R[X]} et ainsi f est injective

• 1 n’a pas d’antécédent par f , en effet si XP = 1 on aurait 0 = 1 donc f n’est pas surjective

- L’application linéaire g : R[X] −→ R[X]
P 7−→ P ′

est surjective, mais non injective.

En effet :

• Pour Q =

n∑
k=0

akX
k un polynôme quelconque de R[X],

en prenant P =

n∑
k=0

ak
k + 1

Xk+1 on a g(P ) = Q donc tout élément de R[X] admet un antécédent par g,

g est surjective

• g(1) = 0R[X] donc Ker(g) ̸= {0R[X]} et ainsi g n’est pas injective

Cette dernière remarque est difficile pour un élève de BCPST car on fait essentiellement des exercices en dimen-
sion finie. A vous de montrer que vous êtes capable de retenir ces parties du cours, je vous assure c’est possible
vous pouvez le faire.
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5
Représentation matricielle.

Soient E et F deux K espaces vectoriels de dimension finie.

On notera si nécessaire : p = dim(E), B = (e1, ..., ep) une base de E,
n = dim(F ), B′ = (e′1, ..., e

′
n) une base de F .

5.1 Introduction.

Soit f une application linéaire de E dans F .

Pour u =

p∑
k=1

xkek ∈ E, comme f est linéaire on obtient : f(u) =

p∑
k=1

xkf(ek) et en appliquant CoordB′ qui est

aussi linéaire il vient : CoordB′
(
f(u)

)
=

p∑
k=1

xkCoordB′
(
f(ek)

)
Ce qui donne (Raisonnement déjà vu : AX =

p∑
i=1

xiCi) :

CoordB′
(
f(u)

)
=


...

...
...

CoordB′(f(e1)) · · · CoordB′(f(ej)) · · · CoordB′(f(ep))
...

...
...


x1

...
xp



5.2 Matrice d’une application linéaire.

Définition

Soient B = (e1, . . . , ep) une base de E, B′ une base de F et f ∈ L (E,F ),

on appelle matrice de f dans les bases B et B′ la matrice (notée : MatB,B′(f) )

MatB,B′(f) = MatB′(f(e1), . . . , f(ep)) ou encore MatB′(f(B))

Remarques :

• La matrice MatB,B′(f) dépend du choix des bases B et B′.

• On dit que la matrice MatB,B′(f) représente f dans les bases B et B′.

• Lorsque f est un endomorphisme de E et que B = B′ on note : MatB,B′(f) = MatB(f).

• La matrice de l’application nulle est la matrice nulle.

Illustration permettant de retenir la définition.

f(B)︷ ︸︸ ︷
f(e1)︸ ︷︷ ︸

↓

f(ej)︸ ︷︷ ︸
↓

f(ep)︸ ︷︷ ︸
↓

MatB,B′(f) =



...
...

...

... · · ·
... · · ·

...

...
...

...



→ e′1
...

→ e′i
...

→ e′n


B′
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Théorème :

Pour B une base de E et B′ une base de F (deux bases fixées)

l’application f 7−→ MatB,B′(f) est une bijection de L (E,F ) dans Mn,p(R)

En effet : Une application linéaire est entièrement définie par l’image d’un base.

Remarques :

➊ Pour montrer que f = g, il suffit de montrer que pour des bases B et B′ quelconques,

MatB,B′(f) = MatB,B′(g)

➋ On peut définir une application linéaire en donnant sa matrice dans deux bases quelconques.

Théorème : (Théorème très utilisé dans ce cours, plus rarement en exercice) On le notera ”Théorème (∗)”

Soient B une base de E, et B′ une base de F et f une application linéaire de E dans F ,

MatB,B′(f) est l’unique matrice A ∈ Mn,p(R) vérifiant :

∀u ∈ E, CoordB′(f(u)) = ACoordB(u)

En effet : (Fait au tableau)
• On a vu dans l’introduction que MatB,B′(f) convient

• Si A1 et A2 conviennent alors ∀u ∈ E, A1 CoordB(u) = A2 CoordB(u) donc ∀X ∈ Mp,1(K), A1X = A2X
En prenant X1, ... , Xp la base canonique de Mp,1 on montre que A1 et A2 ont les mêmes colonnes donc A1 = A2.
(d’où l’unicité.)

Dans la suite de ce cours on utilisera Théorème (∗) sous la forme :

Si on trouve une matrice A vérifiant ∀u ∈ E, CoordB′(f(u)) = ACoordB(u)

alors on pourra affirmer que MatB,B′(f) = A

Relation importante : Pour f ∈ L (E,F ), B une base de E et B′ une base de F

∀u ∈ E, CoordB′(f(u)) = MatB,B′(f) CoordB(u)

Avec son corollaire plus couramment utilisé : Pour f ∈ L (E), B une base de E

∀u ∈ E, CoordB(f(u)) = MatB(f) CoordB(u)

5.3 Matrices et opérations.

5.3.1 Matrice d’une combinaison de deux applications linéaires.

Théorème

Soient B une base de E et B′ une base de F ,
Pour tout (f, g) ∈ L (E,F )2 et pour tout (α, β) ∈ K2 on a :

MatB,B′(αf + βg) = αMatB,B′(f) + βMatB,B′(g)

En effet : ∀u ∈ E, CoordB′((αf + βg)(u)) = CoordB′(αf(u) + βg(u))

= αCoordB′(f(u)) + βCoordB′(g(u))

= αMatB,B′(f)CoordB(u) + βMatB,B′(g)CoordB(u)

=
(
αMatB,B′(f) + βMatB,B′(g)

)
︸ ︷︷ ︸

MatB,B′ (αf+βg)

CoordB(u)

En utilisant le Théorème (∗) il vient : MatB,B′(αf + βg) = αMatB,B′(f) + βMatB,B′(g)

13



Conqéquence :

Soient B une base de E et B′ une base de F ,

l’application f 7−→ MatB,B′(f) est un isomorphisme de L (E,F ) dans Mn,p(R)

En effet : On vient de démontrer qu’elle est linéaire et un peu plus haut on a vu qu’elle est bijective.

5.3.2 Matrice de la composée de deux applications linéaires.

Théorème

Soient B1 une base de E, B2 une base de F et B3 une base de G,

Pour tout f ∈ L (E,F ) et g ∈ L (F,G) on a : MatB1,B3(g ◦ f) = MatB2,B3(g) MatB1,B2(f)

Démonstration :

En effet : ∀u ∈ E, CoordB3(g(f(u)) = MatB2,B3(g)CoordB2(f(u))

=
(
MatB2,B3

(g)MatB1,B2
(f)
)

︸ ︷︷ ︸
MatB1,B3

(g◦f)

CoordB1
(u)

En utilisant le Théorème (∗) il vient : MatB1,B3(g ◦ f) = MatB2,B3(g) MatB1,B2(f)

Corollaire (trois endomorphismes et quatre bases)

Soient f, g, h ∈ L (E) et B1, B2, B3 et B4 quatre bases de E.

MatB1,B4(h ◦ g ◦ f) = MatB3,B4(h) MatB2,B3(g) MatB1,B2(f)

En effet :

Corollaire (Puissance d’un endomorphisme avec une seule base).

Pour f un endomorphisme de E, m un entier naturel et B une base de E,

MatB (fm) = (MatB (f))
m

En effet :

5.3.3 Matrice de la réciproque d’une application linéaire bijective.

Théorème

Soient B une base de E, B′ une base de F et f une application linéaire de E dans F .

f est bijective si, seulement si, MatB,B′(f) est inversible

et alors :
MatB′,B(f−1) = (MatB,B′(f))

−1

Démonstration :
• Supposons que MatB,C (f) est inversible.

Prenons une vecteur v de F et cherchons ses antécédents par f :
Pour u ∈ E,

f(u) = v ⇐⇒ MatB,C (f)CoordB(u) = CoordC (v)

⇐⇒ CoordB(u) = MatB,C (f)−1CoordC (v)

⇐⇒ u = Coord−1
B

(
MatB,C (f)−1CoordC (v)

)
Tout élément de F admet un unique antécédent par f , donc f est une bijection ■
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• Supposons que f est une bijection,
- En utilisant le théorème 1, on sait que f(B) est une base de F et ainsi dim(E) =dim(F )
donc MatB,C (f) ∈ Mn(K) (matrice carrée)

- On a aussi vu que f−1 est linéaire. (Voir ci-dessous)

- En utilisant le résultat de la question 2) :

MatB,C (f)MatC ,B(f−1) = MatC (f ◦ f−1)

= MatC (IdF )

= In

MatC ,B(f−1)MatB,C (f) = MatB(f−1 ◦ f)
= MatB(IdE)

= In

on peut en conclure que MatB,C (f) est inversible et que (MatB,C (f))
−1

= MatC ,B(f−1) ■

Ce qui achève la démonstration de :

f est bijective si, seulement si, MatB,C (f) est inversible
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6
Isomorphe à Kn.

Définition.

Soient E et F deux espaces vectoriels,

Dire que E et F sont isomorphes signifie qu’il existe un isomorphisme de E dans F .

Théorème.

Pour n un entier naturel non nul,

tout espace vectoriel de dimension n est isomorphe à Kn.

Conséquence.

Soient E et F deux espaces vectoriels de dimension finie,

E et F sont isomorphes si, et seulement si, dim(E) =dim(F ) .

Remarque dans ce cours on utilise l’isomorphisme ”coordonnées” une fois une base de E choisie.

Théorème :

Soient E un espace de dimension finie et B une famille de vecteurs de E.

Si B est une base de E alors

l’application E −→ Mn,1(K)
v 7−→ CoordB(v)

est un isomorphisme.

Démonstration : (Vue dans le cours sur les espaces vectoriels)

Théorème :

Soient E un espace de dimension finie, B une base de E et u1, ... un des vecteurs de E.

➊ Pour tout v ∈ E ,

v ∈ Vect(u1, . . . , un) ⇐⇒ CoordB(v) ∈ Vect(CoordB(u1), . . . ,CoordB(un))

➋
(u1, . . . , un) est libre si, et seulement si, (CoordB(u1), . . . ,CoordB(un)) est libre.

➌

rg(u1, . . . , un) = rg(CoordB(u1), . . . ,CoordB(un)).

Démonstration.
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7
Rang d’une application linéaire.

Soient E et F deux K espaces vectoriels de dimension finie. On note p = dim(E) et n = dim(F ).

7.1 Définition.

Définition :

Soit f une application linéaire de E dans F ,

on appelle rang de l’application linéaire f l’entier naturel noté rg(f) et défini par :

rg(f) = dim (Im(f))

7.2 Lien avec les autres notions de rang.

On note B = (e1, e2, . . . , ep) une base de E et B′ une base de F .

rg(f) = dim (Im(f))

= dim (Vect ⟨f(e1), f(e2), . . . , f(ep)⟩)
= rg (f(e1), f(e2), . . . , f(ep))

= rg (CoordB′(f(e1)),CoordB′(f(e2)), . . . ,CoordB′(f(ep)))

= rg (MatB′(f(e1), f(e2), . . . , f(ep)))

= rg (MatB,B′(f))

7.3 Théorème du rang

Théorème :

Soient E un K-espace vectoriel de dimension finie et F un K-espace vectoriel quelconque

∀f ∈ L (E,F ), rg(f) + dim(ker(f)) = dim(E)

Démonstration : Ex 4 de la feuille Cours 6 3.

7.4 Caractérisation des isomorphimes

Théorème :

Soient E et F deux K-espace vectoriel de dimension n et f ∈ L (E,F )

f est bijective si, et seulement si, rg(f) = n

En effet :
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8
Une matrice vue comme une application linéaire.

Ici n et p désignent deux entiers naturels non nuls.

8.1 Application linéaire canoniquement associée à une matrice.

Définition.

Pour toute matrice M de Mn,p(K) on appelle application canoniquement associée à M , l’application :

Mp,1(K) −→ Mn,1(K)
X 7−→ MX

Propriété

Pour toute matrice M de Mn,p(K) l’application : Mp,1(K) −→ Mn,1(K)
X 7−→ MX

est linéaire.

Démonstration : Voir feuille cours cours 6 quinquies.

En notant : B la base canonique de Mp,1(K), B′ la base canonique de Mn,1(K).

La matrice de f dans les bases B et B′ (MB,B′(f)) est égale à M .

8.2 Noyau, image.

Définition :

Pour toute matrice M de Mn,p(K), on définit le noyau et l’image de M par :

ker(M) =
{
X ∈ Mp,1(K)

∣∣∣ MX = 0
}

Im(M) =
{

MX
∣∣∣ X ∈ Mp,1(K)

}
Remarques :

• En notant f : Mp,1(K) −→ Mn,1(K)
X 7−→ MX

on a : ker(M) = ker(f) et Im(M) = Im(f)

• ker(M) =


x1

...
xp

 ∈ Mp,1(K)
∣∣∣ M

x1
...
xp

 =

0
...
0

  et Im(M) =

 M

x1
...
xp

 ∣∣∣ (x1, ..., xp) ∈ Kp


• ker(M) et Im(M) sont des espaces de matrices colonnes. ker(M) ⊂ Mp,1(K) et Im(M) ⊂ Mn,1(K)

• Pour tout Y ∈ Mn,1(K) , Y ∈ Im(M) ⇐⇒ ∃X ∈ Mp,1(K) : Y = MX

• Le plus souvent pour déterminer une base de ker(M) on résout le système homogène MX = 0.
(Méthode du pivot sur les lignes)
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• Le plus souvent pour déterminer une base Im(M) on utilise Im(M) =Vect( C1 , ... , Cp︸ ︷︷ ︸
Le colonnes de M

) et ensuite :

➊ On utilise les relations entre les colonnes données par l’étude du noyau pour supprimer des colonnes.
ou

➋ On utilise la méthode du pivot sur les colonnes de M .
ou

➌ On connait la dimension m avec le théorème du rang et on trouve une famille libre de m vecteurs de Im(M).

Proposition :
Lien entre noyau et image d’une matrice et d’une application linéaire représentée par cette matrice dans des bases.

Soient f ∈ L (E,F ), B une base de E et B′ une base de F :

∀u ∈ E, u ∈ ker(f) ⇐⇒ CoordB(u) ∈ ker(MatB,B′(f))

∀v ∈ F, v ∈ Im(f) ⇐⇒ CoordB′(v) ∈ Im(MatB,B′(f))

Exemples :

1. Soit ∆ l’application linéaire de R2[X] dans R2[X] qui à P (X) associe P (X + 1)− P (X − 1).

(on ne démontera pas que ∆ est bien linéaire).

Déterminer une base du noyau et une base de l’image de ∆.

2. Soit f l’application linéaire de R3[X] dans R3 qui à P (X) associe (P (0), P (1), P (2)).

(on ne démontera pas que f est bien linéaire).

Déterminer une base du noyau et une base de l’image de f .

8.3 Rang d’une matrice.

Définition : Le rang de M est la dimension de l’espace engendré par les colonnes de M

C’est le rang de l’application linéaire : Mp,1(K) −→ Mn,1(K)
X 7−→ MX

Dans l’algorithme du pivot de Gauss pour la résolution du système homogène MX = 0 :
(système n équations, p inconnues)

• rg(M) est le nombre d’inconnues principales, (ou encore le nombre de pivots)

• dim(ker(M)) est le nombre d’inconnues secondaires,

Théorème :

Pour toute matrice M de Mn,p(K) : dim(Im(M)) + dim(ker(M)) = p

En effet :

Attention : p est le nombre de colonnes de M .

Corollaire :

Pour toute matrice M de Mn(K) : dim(Im(M)) + dim(ker(M)) = n

8.4 Inverse à gauche, inverse à droite.

Théorème.

Pour A ∈ Mn(K) et B ∈ Mn(K) deux matrices carrées, AB = In ⇐⇒ BA = In

Démonstration : (Il suffit de montrer une deux implications).
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9
Changement de base.

9.1 Matrice de passage.

Définition et notation

Soient B et B′ deux bases de E,

la matrice MatB(B′) est appelée matrice de passage de B à B′, on la note PB,B′

Remarques :
➊ Quand on donne une nouvelle base B′, on donne la matrice MatB(B′).

La matrice des vecteurs de la nouvelle base dans l’ancienne.

➋ Pour les démonstrations on pourra utiliser la remarque PB,B′ = MatB′,B(IdE)

Exemples : Voir Feuille Cours 6 5

Propriétés.

Quelles que soient B et B′ deux bases de E, PB,B = In et PB,B′
−1 = PB′,B

Démonstration.

Remarque : Toute matrice inversible est la matrice de passage entre deux bases bien choisies.

Propriétés. (Complément)

Quelles que soient B, B′ et B′′ trois bases de E, PB,B′PB′,B′′ = PB,B′′

Démonstration.

9.2 Changement de bases, action sur les coordonnées d’un vecteur.

Théorème

Quelles que soient B et B′ deux bases de E, ∀u ∈ E, CoordB(u) = PB,B′ CoordB′(u)

En effet u =

n∑
k=1

x′
ke

′
k donc CoordB(u) =

n∑
k=1

x′
kCoordB(e′k) = MatB(B′)

x′
1
...
x′
n

 = PB,B′ CoordB′(u)

■

CoordB(u) = PB,B′ CoordB′(u)

Remarques :
• en notant : X = CoordB(u) , X ′ = CoordB′(u) et P = PB,B′

X = PX ′ X ′ = P−1X

• Certains trouvent le nom ”matrice de passage de B à B′ contre-intuitif.
en effet : pour passer de X à X ′ on applique X 7−→ PB′,BX

Exemples : Voir Feuille Cours 6 5
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9.3 Changement de bases, action sur la matrice d’un endomorphisme.

Théorème

Soient B et B′ deux bases de E.

∀f ∈ L (E) MatB′(f) = PB′,BMatB(f)PB,B′

En effet : Pour u ∈ E,

CoordB′(f(u)) = PB′,BCoordB(f(u))

= PB′,BMatB(f)CoordB(u)

∀u ∈ E, CoordB′(f(u)) = PB′,BMatB(f)PB,B′︸ ︷︷ ︸
MatB′ (f)

CoordB′(u)

Ici il faut se rappeler que :

MatB,B′(f) est l’unique matrice A ∈ Mn,p(R) vérifiant : ∀u ∈ E, CoordB′(f(u)) = ACoordB(u)

• Il y a plusieurs démonstration de cette formule, mais à la fin il faut trouver un moyen de la retenir .

MatB′(f) = PB′,BMatB(f)PB,B′

• Si on note M = MatB(f), M ′ = MatB′(f) et P = PB,B′ alors :

M ′ = P−1MP

et
M = PM ′P−1

Remarque : (Plus compréhensible après le chapitre sur la diagonalisation).

On passe souvent d’une base B à une base B′ dans laquelle la matrice M ′ = ∆ est plus simple
(diagonale ou triangulaire).

on a alors avec la formule du changement de base en notant P = PB,B′ :

∆ = P−1MP

on en déduit la relation :
M = P∆P−1

Exemple :

A =

2 0 0
3 4 −3
1 0 1

 , P =

0 1 0
1 0 1
1 1 0

 , D =

1 0 0
0 2 0
0 0 4

 , A = PDP−1 .
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10
Matrices semblables

Dans ce paragraphe toutes les matrices sont carrées.

Définition :

Soient M et N deux matrices de Mn(K),

dire que M est semblable à N signifie qu’il existe une matrice P inversible de Mn(K) telle que :

M = P−1NP

Exemple et contre exemple.

1. M =

(
2 1
0 3

)
et N =

(
2 0
0 3

)
sont semblables.

2. M =

(
1 1
0 1

)
et N =

(
1 0
0 1

)
ne sont pas semblables.

Attention : une telle matrice P n’est pas unique.

En effet :

Proposition

1. M est semblable à M . (réflexif)

2. Si M est semblable à N alors N est semblable à M . (symétrique)

3. Si M1 est semblable à M2 et M2 est semblable à M3 alors M1 est semblable à M3.

(transitive)

Démonstration.

Caractérisation.

Soient M et N deux matrices de Mn(K),

M et N sont semblables si, et seulement si,

elles sont les matrices d’un même endomorphisme dans deux bases.

Démonstration.

Autrement dit :

Deux matrices M et N de Mn(K) sont semblables si, et seulement si, :
pour un espace E de dimension n, un endomorphisme f de E et deux bases B, B′ de E, on a :

M = MatB′(f) et N = MatB(f)

M et N représentent le même endomorphisme dans deux bases.
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Théorème :

Si deux matrices M et N sont semblables avec pour P inversible la relation N = P−1MP alors

∀n ∈ N, Nn = P−1MnP

Démonstration. voir feuille Cours 6 5 Ex 5

Remarques :

• si M et N sont semblables alors pour tout n ∈ N, Mn et Nn le sont aussi.

• On utilise les matrices semblables pour calculer les puissances de matrice.

Proposition

Soit λ ∈ K,

M est semblable à λIn si, et seulement si, M = λIn.

En effet :

Théorème : (complément)

Soient A et B deux matrices de Mn(K),
Si A et B sont semblables alors rg(A) = rg(B).

Démonstration. voir feuille Cours 6 5 Ex 10

Remarque : La réciproque est fausse, voir feuille Cours 6 5 Ex 9

Théorème : (complément)

Soient A et B deux matrices de Mn(K),
Si A et B sont semblables alors tr(A) = tr(B).

Démonstration. voir feuille Cours 6 5 Ex 6
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