Applications linéaires.

Dans ce cours E et F' désignent deux espaces vectoriels quelconques sur K. (K =R ou C)

1.1 Exemples.

e Les applications linéaires de R dans R sont les fonctions f de R dans R vérifiant :

illexistea e Rtelque: f: R — R
T —> ax

Remarque : Ce sont les seules fonctions de R dans R qui possedent la propriété :
V(z1,22) €R®, V(a,B) €R?, flamy + Brg) = af (x1) + Bf (x2)
e "Linéarité de 'intégrale”.
Soient a et b deux réels tels que @ < b, on considere 'application : C°([a,b]) — R
. / Cf ar
En notant ¥ cette application on a : ‘
V(f1, f2) € C%[a,0])*, W(a.B) €R®, W(afi +Bf2) = a¥(f1) + BU(f2)
e "Linéarité de I’espérance”.

Soit (2, (), P) un espace probabilisé, on note ¥ ensemble des variables aléatoires sur {2,
on considere 'application définie dans le cours de probabilité :

E: ¥ — R
X — E(X)

Cette application E vérifie : V(X1, Xo) € #2, V(a, 8) € R?, E(aX; + 8Xz2) = aB(X)) + BE(Xy)

e "Le passage aux coordonnées dans une base est linéaire”.
Soit E un espace vectoriel de dimension n et B une base de E, E — ., 1(R)
u +— Coordp(u)
Cette application Coordp vérifie :

V(ui,uz) € B2, V(a,B) € R?,  Coord(au; + Bus) = a Coordp(u;) 4 8 Coord g (us)

e "Le passage a la dérivée est linéaire”.
On considere I'application : C*(R) — C*(R)
foo—=r

En notant d cette application on a :
V(f1,f2) € CX(R)?, V(a,B) €R?, d(afi+Bf2) = ad(fr) +Bd(f)

o "X — AX”.

Soient p et n deux entiers naturels non nuls et A une matrice de ., ,(R)
On considere I'application :
Mpi(R) — M1 (R)
X — AX

En notant ¥ cette application on a :

V(X1, Xo) € Mp1(R)?, Y(a,B) €R? U(aX; + BXs) = a ¥ (X)) + BTU(Xy)



1.2 Définitions et vocabulaire.

Définition :

Soit f une application de F dans F.

Dire que f est une application linéaire signifie que :

V(a,B) € K%, V(u,v) € E*,  f(au+ pv) = af(u) + Bf(v)

Vocabulaire et notations :
e On note : Z(E,F) lensemble des applications linéaires de E dans F'.
e (Lorsque F' = K). On appelle forme linéaire sur E les applications linéaires de F dans K.
e (Lorsque F' = E). On appelle endomorphisme de F les applications linéaires de E dans E.
e On note .Z(FE) I'ensemble des endomorphismes de E.
e Les applications linéaires bijectives sont appelées isomorphismes.
e Les endomorphismes bijectifs sont appelés automorphismes.

e On note GL(FE) I'ensemble des automorphismes de E. (Groupe Linéaire)

Des cas particuliers importants.
L’application nulle de E dans F' est linéaire.
L’application identité de E' est un endomorphisme de E. (c’est méme un isomorphisme)

L’application Coordp définie dans le cours sur les espaces vectoriels est un isomorphime.

Autres exemples dans la feuille Cours_6.

1.3 Propriétés.

Propositions :

O Si f est linéaire de F dans F,on a alors: f(0g) =0p

@ Si f est linéaire de F dans F,

pour tout (uy,...,u,) € E™ et (A,...,A\p) €K", f (Z)‘iui> = Z)\if(ui)

i=1

Démonstration : feuille Cours_6

Remarque :

Pour démontrer qu’une application de F dans F' n’est pas linéaire, on montre au choix :

©® f(0p) #0p
® En prenant oo = dans K et v=__ dans E, on a f(au) # af(u)
® En prenant u = dans Eetv=___ dans E, on a f(u+v) # f(u) + f(v)

Ezemples dans la feuille Cours_6.



Opérations et applications linéaires.

2.1 Combinaison linéaire.

Des précisions sur lespace vectoriel FE ot E et F désignent deux espaces vectoriels.

Définition :

Pour f une application E dans F et o un scalaire on définit les applications :

af: E — F f+9g: E— F
u — af(u) u — f(u) +g(u)

Remarques :
e On admet que F¥ muni de ces deux lois est un espace vectoriel.

e Le vecteur nul de FF est la fonction nulle, plus précisément c’est Papplication E — F
u — Op

Théoréme :

Soient f et g deux applications de E dans F,
Si f et gsont dans Z(E, F) et o et § deux scalaires alors «f + 8g € Z(E,F) .

Démonstration :
Soient (a, 8) € K? et (f,g) € Z(E, F)?, on note h = af + g,
Soient (A, 1) € K? et (u,v) € E?,

h(Au+ pv) = af(Au+ pw) + Bg(Au + ) (Définitions des opérations ci-dessus)
= arf(u)+apf(v) + Brg(u) + Bug(v) (f et g sont linéaires)
= Maf(w) + Bg(u) + plaf() + Bg(v))
= Ah(u) + ph(v)

donc h=af+Bgec Z(E,F)

On a bien démontré que : ’si feX(EF)et ge L(E,F) alors af + g G.i”(E,F)‘

Remarques :

e Le vecteur nul étant 'application nulle de E dans F', Z(E, F') est un sous-espace vectoriel de FE.

e Plus généralement : Toute combinaison linéaire d’applications linéaires est une application linéaire.

n

Si  pour tout k € [I;n], \y €Ket f € L(E,F) alors Z)\kfk € 4(E,F)
k=1



2.2 Composition.

Théoréme :

Soient E, F' et G trois espaces vectorielset f: E— Fetg: F — G.
Si feZEF) et ge L(F,G) alors gofeXE,G)

Démonstration :
On suppose f € Z(E,F) et g € Z(F,Q),
Soient (a, 8) € K? et (u,v) € E?,

go flau+pv) = glaf(u)+Bf(v)) car f € Z(E, F)
ag(f(u))+Bg(f(v)) car g € Z(F,G)
= ago f(u)+Bgo f(v)

donc go f € Z(E,G)
Remarque : Plus généralement : Toute composée d’applications linéaires est une application linéaire.

Propriétés :

Q@ Si ge Z(F.G), (a1,00) €K%, f1 € L(E,F) fo e Z(E,F)
alors go(aifi+asfs) =aigofitazgofs
@ Si g Z(E,F), (a1,0) €K?,  f1 € L(F,G) fo € Z(F,G)

alors (a1fi+asfe)og= a1 fiog + as faog

Démonstration :

2.3 Puissance d’un endomorphisme

Définition :

Soit f € Z(E), on définit pour n € N la notation f" par la relation de récurrence :

f0 = Idp vneN, frtl=frof

Plus simplement : ff= fo---of
—_—

n applications

Théoréme :

Soient E et F' deux espaces vectoriels, f: E — F et n € N.
Si feZE,F) alors f"e Z(E,F)

Propriétés :

Soit f € Z(FE),
pour tout (n17n2) c NQ7 fn1+n,2 — fnl ° fn2 et <f7l1)n2 — f’!Lan




2.4 Réciproque d’un isomorphisme.

Théoréme :

‘ La réciproque d’une bijection linéaire est linéaire.

Démonstration :
On suppose connaitre f une application linéaire bijective de F dans F’

Soient (v1,v2) € F? et (a1, ay) € F?,
comme f est bijective on peut définir u; = ' (v1) et ug = f~*(va),

ce qui nous donne : v; = f(u1) et va = f(u2).

f o +agve) = M (on f(ur)anf(u2))
= fﬁl(f(ozlul + a2u2)) car f est linéaire
= o1u1 + QoUs car f_lof:IdE

or fHv1) 4+ o f T (v)

Ce qui achéve la démonstration

Autrement dit sachant que la réciproque d’une bijection est une bijection :

Si f est un isomorphisme de E dans F alors f~! est un isomorphisme de F dans E.

Remarque : Si f est un automorphisme alors pour tout n € N, on note f~" 'automorphisme ( f 4)”



Noyau et Image.

3.1 Définitions.

Définition :

Etant donné une application linéaire f : E — F, on appelle :
e noyau de f, le sous-ensemble de F suivant : ker(f)={u€ E | f(u) =0p}
e image de f, le sous-ensemble de F suivant : Im(f) ={ f(u) | u € E}

Remarques :
eker(f)CE et Im(f)CF.

o ker(f) est Pensemble des antécédents de Op par f. Im(f) est 'image directe de E par f.

eIm(f)={veF|FueE: fluy=v}

e Si f est 'application nulle alors Im(f) = {Or} et ker(f) = E.
e Si f est 'application identité de E alors Im(f) = E et ker(f) = {0g}.

3.2 Propriétés.

Si f est une application linéaire de E dans F' alors :

O ker(f) est un sous-espace vectoriel de E

O Im(f) est un sous-espace vectoriel de F.

Démonstrations :
O o ker(f) C E,

e f(0g) =0p donc O € ker(f)
e Soient (a, B) € K? et (u,v) € ker(f)?,

flau+tpv) = af(u)+pf(v)  car feZ(EF)

= alp + B0p
= OF

donc  au+ fu € ker(f)

En conclusion : [ker(f) est un sous-espace vectoriel de F]|

Do Im(f) Cc F,
¢ 0p = f(0g) donc Op € Im(f)
e Soient (o, ) € K? et (v1,v2) € Im(f)?,

car u,v € ker(f)

on note v; = f(uy) et va = f(ug) avec uy,us € E,

avy +Buy = af(ur) + Bf(
= flau + Bus)
€ Im(f)

En conclusion : ’Im( f) est un sous-espace vectoriel de F' ‘

’LLQ)
car f € Z(E,F)




3.3 Image et surjectivité.

Proposition : ’ Pour f € L(E, F), f est surjective si, et seulement si, Im(f) = F‘

Proposition :

‘Soit feL(EF), Si (e1,--- ,e,) est une base de E alors, Im(f) = Vect(f(e1), -, f(en)).

Démonstration 1 : (faite en classe)
Raisonnons par double inclusion

Sachant que pour tout i € [1,n], f(e;) € Im(f) et que Im(f) est un sous-espace vectoriel de F,
on a bien Vect(f(e1), -, f(en)) C Im(f)

n
Soit y € Im(f), on note y = f(z) avec = = Zmiei,
i=1
n

comme f est linéaire, il vient y = inf(ei), et ainsi y € Vect(f(e1), -, f(en))
i=1
on a bien Im(f) C Vect(f(e1),- -, f(en))

En conclusion :

[Tm(f) = Vect(f(er). - fen))]

Démonstration 2 : Une autre démonstration plus efficace mais moins élémentaire.

Im(f) = {f(u)[uveFE}

{f( $i€i> |(I1,...,l‘n)EKn}
k=1

{szf (el) | (xlw .. 7xn) S K" } (CaT f est linéaire}
k=1

Vect(f(e1), -, flen))

3.4 Noyau et injectivité.

Théoréme :

Soit f une application linéaire de E dans F,

f est injective si, et seulement si, ker(f) = {0g}

Démonstration 1 (Fuaite au tableau)

On suppose que f est injective.
Pour z € E,

z €ker(f) < f(z)=0p

< z=0g (car f est injective)
donc ker(f) = {0g} LB
Remarque : au tableau, nous n’avons pas fait un raisonnement par équivalence.
On suppose que ker(f) = {0g}.
Soient (z1,72) € E? tel que  f(x1) = f(x2),
on a alors : f(x1) — f(x2) = 0p, et comme f est linéaire il vient f(x; —x2) =0p

d’ott (x1 — x2) € ker(f) et en utilisant I’hypothese ker(f) = {0g} il vient 21 — 22 = 0p

ou encore T = To.

donc f est injective B



Démonstration 2

Une autre approche par équivalence : (ce n’est pas la démonstration "classique” que j’ai faite au tableau.)

f est injective

111111}

-V(u, v) € E?, f(u) = f(v) <= u= v}
_V(u,v)GEQ, fu) — flv) =0p <= u:v]
_V(u, v) €EE?, flu—v)=0p <= u—v= OE] car f linéaire

-VueE, fu) =0p <= uzOE}

_VueE, u € ker(f) < uzOE}

ker(f) = {0g}

| f est injective si, et seulement si, ker(f) = {0g}]




Image d’une base.

Soient F et F' deux K espaces vectoriels de dimension finie.

Théoréme :

Soit # = (e1,ea,...,e,) une base de F |
quel que soit (v1, va, . . ., v, ) une famille de vecteurs de F, il existe une et une seule application
linéaire f de E dans F' vérifiant :

vie[lin], fle) =

Autrement dit : Une application linéaire est entierement définie par I'image d’une base.
Ezxtrait du programmme : " Détermination d’une application linéaire par I'image d’une base.”

Démonstration : (ce qui a été fait au tableau)
n

n
Idée : Comme f est linéaire alors si u = Z x;e; alors f(u) = Z xif(e;)
k=1 k=1
La seule connaissance des coordonnées de u et les f(e;) permet de calculer f(u).

Existence : L’application suivante convient : (ie : elle est linéaire et vérifie Vi f(e;) = v;)

f: E — F
n T1
U — invi ol : | = Coordg(u)
k=1 .
Au tableau j’ai défini f: E — F c’est une autre approche mais c’est peut-étre plus simple avec les v;.

u — le fles)
k=1
Unicité : Supposons connaitre deux applications f1 et fo qui conviennent.

(ie : elles sont linéaires et vérifient Vi f(e;) = v;)
n

Soit u € £, on note u = Z:ciei,
i=1

filu) = fi <in6i>
=1
= Y =zifile) car f1 € Z(E, F)
=1

= Zwiﬁ(ei) car fi(e;) = fa(e:) = v;
i=1

= f <Z »’81‘61') car fo € Z(E,F)
i=1

= f2(u)

Donc Yu e E, fi(u)=fo(u) donc fi=/f A
Remarque :
Cette partie de la démonstration a €té présentée différemment au tableau, seule la présentation est différente.



Théoreme :

Soit f € Z(E,F) et % une base de FE.

f est bijective si, et seulement si, I'image par f de la base % est une base de F.

Démonstration :
On note B = (ey, ..., e,) et on désigne alors par f(Z) la famille (f(e1), ..., f(en))

Montrons séparément :

O [ injective <= () est libre et @ f surjective <= f(A) est génératrice de F.

Démo de @ (je fais comme au tableau mais on peut aussi faire une double implication)
f est injective <= ker(f) = {0g}

<— Yu€eE, f(u=0p < u=0g

— VY(x1,..,2,) €K", f (inel) =0 <— Zziei =0g
k=1 k=1

n
= Y(x1,..,3,) € K", inf(ei) =0p < Vie[l,n], z; =0
k=1

car (e1,...,en) est libre

car f est linéaire

On retrouve la définition de la liberté de f(A).

[ est injective si, et seulement si, f(%) est libre

Démo de @ (Ici je suis plus efficace qu’au tableau en utilisant le résultat important donnant Im(f) = Vect(f(B)) )

f est surjective <= Im(f)=F
< Vect(f(B))=F

f est surjective si, et seulement si, (%) est une famille génératrice de F

En conclusion :

’ f est bijective si, et seulement si, f(%) est une base de F

Conséquence :

Soit f € Z(E, F) avec E un espace de dimension finie.

Si  f est bijective alors F' est de dimension finie et dim(E) = dim(F).

En effet : On vient de montrer que si f est bijective alors f(%) est une base de F.
Or le nombre de vecteurs de f(£) est égal & dim(F) donc dim(E) = dim(F).

(Quand E et F ont la méme dimension)

Soit f € Z(E,F) avec dim(F) = dim(F).

O f est injective si, et seulement si, f est bijective.

@ f est surjective si, et seulement si, f est bijective.

Démonstration : (1l suffit de montrer : f est injective <= [ est surjective)

On suppose que dim(E) = dim(F) = n, on sait donc que f(%) possede n vecteurs.

10



On utilise deux fois la propriété fondamentale (noté (x)) :

"Dans un espace vectoriel de dimension n, toute famille libre (ou génératrice) de n vecteurs est une base”.

f est injective <= f(Z) est une famille libre (vue dans la démonstration du th. précédent)
(A) est une base de F'
f(ZB) est une famille génératrice de F

—~

!

—~

—
<= f est surjective (vue dans la démonstration du th. précédent)

En conclusion : Lorsque dim(FE) =dim(F') on a

’f est bijective <= f est injective et f est bijective < f est surjective)‘

En pratique :
e quand dim(FE) =

dim(F), il suffit de montrer que f est injective pour montrer qu’elle est bijective.
e quand dim(E) = dim(F), il suffit de montrer que f est surjective pour montrer qu’elle est bijective.

En particulier et le plus utile en pratique.

Soit E un espace de dimension finie et f € Z(E) (un endomorphisme de E).

O [ est injective si, et seulement si, f est bijective.

@ f est surjective si, et seulement si, f est bijective.

En effet : C’est juste un cas particulier du théoréme précédent dans le cas F' = E.

Remarque : Attention ce théoreme est faux en dimension infinie comme le montre les 2 exemples suivants.
- L’application linéaire f: R[X] — R[X] est injective, mais non surjective.
P — XP
En effet :
e Soit P € R[X],

P e ker(f) <~ f(P) = OR[X]
— XP= OR[X]
< P =0pgx intégrité car X # Op[x)

donc ker(f) = {Opx} et ainsi

e 1 n’a pas d’antécédent par f, en effet si XP =1 on aurait 0 = 1 donc ’ f n’est pas surjective

- L’application linéaire g : R[X] — R[X] est surjective, mais non injective.
P +— P
En effet :

e Pour Q = Z ar X" un polynéme quelconque de R[X],
k=0

n
en prenant P = Z %X #+1 on a g(P) = Q donc tout élément de R[X] admet un antécédent par g,
k=0

g est surjective

e g(1) =0px] donc Ker(g) # {Ogr(x)} et ainsi | g n’est pas injective |

Cette derniére remarque est difficile pour un éléve de BCPST car on fait essentiellement des exercices en dimen-
sion finie. A vous de montrer que vous étes capable de retenir ces parties du cours, je vous assure c’est possible
vous pouvez le faire.
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Représentation matricielle.

Soient E et F' deux K espaces vectoriels de dimension finie.

On notera si nécessaire : p = dim(F), % = (e1,...,€p) une base de E,
n=dim(F), & = (e}, ...,e,,) une base de F.

5.1 Introduction.

Soit f une application linéaire de F dans F.
P

P
Pour u = Z zrer € E, comme f est linéaire on obtient : f(u) = Z xr f(er) et en appliquant Coordg qui est
k= k=
1 ) 1
aussi linéaire il vient : Coordg (f(u)) = Z x,Coordg (f(ex))
k=1
Ce qui donne (Raisonnement déja vu : AX = ZmZC’Z) :
=1
: : : !
Coordg (f(u)) = | Coordg (f(e1)) --- Coordg (f(e;)) -+ Coordg (f(ep))
. . . Zp

5.2 Matrice d’une application linéaire.
Définition
Soient # = (ey,...,ep) une base de E, %' une base de F et f € Z(E, F),
on appelle matrice de f dans les bases #Z et %’ la matrice (notée : Matg & (f) )

Matg g (f) = Matg (f(e1),. .., f(ep)) ou encore Matg (f(A))

Remarques :
e La matrice Matg o (f) dépend du choix des bases % et Z'.
e On dit que la matrice Matg & (f) représente f dans les bases 2 et &'
e Lorsque f est un endomorphisme de E et que Z = %’ on note : Matg % (f) = Matz(f).
e La matrice de ’application nulle est la matrice nulle.

Illustration permettant de retenir la définition.

f(#)
f(er) flej) f(ep)
~—~— ~—~— ~——
+ 4 ¢
: : — €]
Mat g a (f) = A N 4
—>.e
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Théoréme :

Pour % une base de E et %' une base de F' (deuz bases fizées)
lapplication f+— Matg s (f) est une bijection de Z(E, F') dans 4, »(R)

En effet : Une application linéaire est entierement définie par I'image d’un base.

Remarques :

O Pour montrer que f = g, il suffit de montrer que pour des bases Z et %’ quelconques,
Mat g,z (f) = Matsz .z (9)
® On peut définir une application linéaire en donnant sa matrice dans deux bases quelconques.

Théoréme : (Théoréme trés utilisé dans ce cours, plus rarement en evercice) On le notera ” Théoréme (*)”

Soient £ une base de E, et %’ une base de I’ et f une application linéaire de E dans F,
Mat g, (f) est I'unique matrice A € 4, ,(R) vérifiant :

VYu € E, Coordg (f(u)) = ACoordg(u)

En effet : (Fait au tableau)
e On a vu dans I'introduction que Matg 4/ (f) convient

e Si Ay et Ay conviennent alors Vu € E, Ay Coordg(u) = Az Coordg(u) donc VX € 4,1(K), A1 X =AX
En prenant Xi, ... , X, la base canonique de .#), 1 on montre que A; et Ay ont les mémes colonnes donc 4; = A,.
(d’olt 'unicité.)

Dans la suite de ce cours on utilisera Théoréme (*) sous la forme :

Si on trouve une matrice A vérifiant Vu € E, Coordg (f(u)) = A Coordg(u)

alors on pourra affirmer que Matg & (f) = A

Relation importante : Pour f € Z(E, F), % une base de E et %' une base de F

' Vue E, Coordg(f(u)) = Matgz(f)Coords(u) |

Avec son corollaire plus couramment utilisé : Pour f € Z(F), % une base de F

| Vue E, Coordg(f(u)) =Matg(f)Coordsg(u) |

5.3 Matrices et opérations.

5.3.1 Matrice d’'une combinaison de deux applications linéaires.

Théoréme

Soient % une base de E et %' une base de F,
Pour tout (f,g) € Z(E, F)? et pour tout (a,) € K* on a :

Matgz 2 (af + Bg) = aMatg 4 (f) + fFMatz 2 (g)

En effet: Vue E, Coordg ((af + Bg)(u)) = Coordg (af(u)+ Bg(u))
aCoordg (f(u)) + BCoordg (g(u))
= OLMatp&gg/ (f)COOI‘dgg(u) + ﬂMat%@/ (g)Coord@(u)

(onatgggr(f) + fMat g, o (g)) Coordg(u)

Mat g 5/ (af+8g)

En utilisant le Théoréme () il vient : Matg g (af + Bg) = aMatg 2 (f) + fMatz 2 (g)

13



Congéquence :

Soient % une base de E et %’ une base de F,
Vapplication f+— Matg 4 (f) est un isomorphisme de Z(E, F) dans 4, ,(R)

En effet : On vient de démontrer qu’elle est linéaire et un peu plus haut on a vu qu’elle est bijective.

5.3.2 Matrice de la composée de deux applications linéaires.

Théoréme

Soient #; une base de E, % une base de F' et %3 une base de G,

Pour tout f € Z(E,F)et g€ Z(F,G)ona: Matg, (g0 f) =Matg, z,(9) Mate, =, (f)

Démonstration :

En effet : Vue E, Coordg,(g(f(u)) = Mateg, a,(g)Coorda, (f(u))
(Matiz, i, (9)Mat s, 2, (f) ) Coordug, (u)

Mat g, B3 (gof)

En utilisant le Théoréme () il vient : Matg, @, (g0 f) = Matg, =, (9) Mata, 2, (f)

Corollaire (trois endomorphismes et quatre bases)

Soient f,g,h € L(E) et By, Ba, B3 et PB4 quatre bases de E.

Matggl7gg4 (h' ©go f) = Matgg&g&l (h) Mat@%@s (g) Ma‘t@h@z (f)

En effet :

Corollaire (Puissance d’un endomorphisme avec une seule base).

Pour f un endomorphisme de E, m un entier naturel et % une base de F,

Matg (f™) = (Matzg ()™

En effet :

5.3.3 Matrice de la réciproque d’une application linéaire bijective.

Théoréme

Soient % une base de E, %’ une base de F' et f une application linéaire de E dans F.
f est bijective si, seulement si, Matg 4 (f) est inversible

et alors :

Mat g (f ) = (Mateg g (f)) "

Démonstration :

e Supposons que Matg «(f) est inversible.
Prenons une vecteur v de F' et cherchons ses antécédents par f :
Pour v € F,

flu)=v <= Matgx(f)Coordg(u) = Coordy(v)
<= Coordg(u) = Matg . (f)~'Coorde(v)
— u = Coordy (Mat g« (f) ' Coordy(v))

Tout élément de F' admet un unique antécédent par f, donc f est une bijection H
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e Supposons que f est une bijection,
- En utilisant le théoréme 1, on sait que f(B) est une base de F et ainsi dim(E) =dim(F)
donc Matg «(f) € #,(K) (matrice carrée)

- On a aussi vu que f~! est linéaire. (Voir ci-dessous)

- En utilisant le résultat de la question 2) :

Matg e (f)Mate z(f~") = Mate(fo f7)
Mat(Idp)
- I,

Matg 5(f~")Matz«(f) = Matg(f~ o f)
= Matg(Idp)
I,

on peut en conclure que Matg 4 (f) est inversible et que (Matgz.«(f))” " = Mate z(f~') B

Ce qui acheve la démonstration de :

f est bijective si, seulement si, Matgz «(f) est inversible
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Isomorphe a K".

Définition.

Soient E et F' deux espaces vectoriels,

Dire que F et F' sont isomorphes signifie qu’il existe un isomorphisme de E dans F.

Théoréme.

Pour n un entier naturel non nul,

tout espace vectoriel de dimension n est isomorphe a K”.

Conséquence.

Soient E et F' deux espaces vectoriels de dimension finie,

E et F sont isomorphes si, et seulement si, dim(EF) =dim(F) .

Remarque dans ce cours on utilise l’isomorphisme "coordonnées” une fois une base de E choisie.

Théoréme :

Soient E un espace de dimension finie et % une famille de vecteurs de F.
Si # est une base de E alors

lapplication E — #,1(K) est un isomorphisme.
v +— Coordg(v)

Démonstration : (Vue dans le cours sur les espaces vectoriels)

Théoréme :
Soient E un espace de dimension finie, # une base de £ et wuyq, ... u, des vecteurs de E.
@ Pour tout v € F
v € Vect(uy,...,u,) <= Coordg(v) € Vect(Coordg(uy),...,Coordg(uy))
(2]
(u1,...,up) est libre si, et seulement si, (Coordg(uy),...,Coordg(uy)) est libre.
(3]
rg(ug, ..., u,) = rg(Coordg(uy), . .., Coordg (uy)).
Démonstration.
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Rang d’une application linéaire.

Soient E et F' deux K espaces vectoriels de dimension finie. On note p = dim(E) et n = dim(F).

7.1 Définition.

Soit f une application linéaire de E dans F,

on appelle rang de 'application linéaire f l'entier naturel noté rg(f) et défini par :

rg(f) = dim (Im(f))

7.2 Lien avec les autres notions de rang.

On note & = (e1, e2,...,€,) une base de E et %’ une base de F.

rg(f) = dim(Im(f))
= dim (Vect (f(e1), f(e2), ..., f(ep)))
rg (f(e1), f(e2), - --,f(ep))
rg (Coordg (f(e1)), Coordg (f(e2)),. .., Coordg (f(ep)))
= 1g(Matg (f(e1), flea),. .., f(ep)))
rg (Matag, 2 (f))

7.3 Théoreme du rang

Théoréme :

Soient E un K-espace vectoriel de dimension finie et F' un K-espace vectoriel quelconque

Vfe X(E,F), rg(f) + dim(ker(f)) = dim(F)

Démonstration : Fz 4 de la feuille Cours_6_3.

7.4 Caractérisation des isomorphimes

Théoréme :

Soient E et F' deux K-espace vectoriel de dimension n et f € Z(E, F)

f est bijective si, et seulement si, rg(f) =n

En effet :
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Une matrice vue comme une application linéaire.

Ici n et p désignent deux entiers naturels non nuls.

8.1 Application linéaire canoniquement associée a une matrice.

Définition.

Pour toute matrice M de .4, ,(K) on appelle application canoniquement associée & M, 'application :

%p,l(K) — %n,l(K>
X — MX

Propriété

Pour toute matrice M de .4, ,(K) lapplication : .#,1(K) — 4, 1(K) est linéaire.

s

X — MX

Démonstration : Voir feuille cours_cours_6_quinquies.
En notant : % la base canonique de .#,, 1 (K), %' la base canonique de .#, 1 (K).

La matrice de f dans les bases B et B' (Mp 2 (f)) est égale & M .

8.2 Noyau, image.

Définition :

Pour toute matrice M de .4, ,(K), on définit le noyau et 'image de M par :

ker(M) = {X e M1 (K) ‘ MX =0 } Im(M) = { MX ’ X € M1 (K) }
Remarques :
e En notant f: #p1(K) — #,1(K) ona: ker(M)=ker(f) et Im(M) = Im(f)
X — M
T T 0 Ty
o ker(M) = e K) [ M| 2= et Im(M)=< M| : (x1,...,zp) € KP
Tp Tp 0 Tp

o ker(M) et Im(M) sont des espaces de matrices colonnes.  ker(M) C 4, 1(K) et Im(M) C M, 1(K)
e Pourtout Y € #,1(K), YeIm(M) < 3IX € 4, 1(K): Y =MX

e Le plus souvent pour déterminer une base de ker(M) on résout le systéme homogene M X = 0.
(Méthode du pivot sur les lignes)
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e Le plus souvent pour déterminer une base Im(M) on utilise Im(M) =Vect( Cy , ..., Cp ) et ensuite :
—_———

Le colonnes de M
@ On utilise les relations entre les colonnes données par ’étude du noyau pour supprimer des colonnes.
ou
® On utilise la méthode du pivot sur les colonnes de M.
ou
©® On connait la dimension m avec le théoréeme du rang et on trouve une famille libre de m vecteurs de Im(M).

Proposition :
Lien entre noyau et image d’une matrice et d’une application linéaire représentée par cette matrice dans des bases.

Soient f € Z(E, F), % une base de FE et %' une base de F :
Vu e E, wu€ker(f) <= Coordg(u) € ker(Matgz 2 (f))

Yoe F, velm(f) «— Coordg (v) € Im(Matg o (f))

Exemples :
1. Soit A Papplication linéaire de Ro[X] dans Ro[X] qui & P(X) associe P(X +1) — P(X —1).
(on ne démontera pas que A est bien linéaire).
Déterminer une base du noyau et une base de 'image de A.
2. Soit f I'application linéaire de R3[X] dans R* qui a P(X) associe (P(0), P(1), P(2)).
(on ne démontera pas que f est bien linéaire).
Déterminer une base du noyau et une base de I'image de f.

8.3 Rang d’une matrice.

Définition : ’ Le rang de M est la dimension de ’espace engendré par les colonnes de M

C’est le rang de lapplication linéaire : 4, 1(K) — #,1(K)
X — MX

Dans l'algorithme du pivot de Gauss pour la résolution du systéme homogene M X =0 :
(systéme n équations, p inconnues)

e rg(M) est le nombre d’inconnues principales, (ou encore le nombre de pivots)

e dim(ker(M)) est le nombre d’inconnues secondaires,

Théoréme :

‘ Pour toute matrice M de 4, ,(K) : dim(Im(M)) + dim(ker(M)) =p

En effet :
Attention : p est le nombre de colonnes de M.

Corollaire :

‘ Pour toute matrice M de ., (K) : dim(Im(M)) + dim(ker(M)) =n

8.4 Inverse a gauche, inverse a droite.

Théoréme.

‘ Pour A € 4, (K) et B € #,(K) deux matrices carrées, AB =1, < BA=1,

Démonstration : (1l suffit de montrer une deux implications).
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Changement de base.

9.1 Matrice de passage.

Définition et notation

Soient # et %' deux bases de E,
la matrice Matg(%') est appelée matrice de passage de B a %', on la note Py o

Remarques :
® Quand on donne une nouvelle base %', on donne la matrice Matz(%’).
La matrice des vecteurs de la nouvelle base dans l’ancienne.

@ Pour les démonstrations on pourra utiliser la remarque Pg o = Matg 2(IdEg)
Exemples : Voir Feuille_Cours_6_5

Propriétés.

Quelles que soient Z et %’ deux bases de E, Pz s =1, et P@“@fl =Py »

Démonstration.
Remarque : Toute matrice inversible est la matrice de passage entre deux bases bien choisies.

Propriétés. (Complément)

‘ Quelles que soient &, B’ et %" trois bases de E, Py o Pg @ = Pog g ‘

Démonstration.

9.2 Changement de bases, action sur les coordonnées d’un vecteur.

Théoréme

‘ Quelles que soient % et %’ deux bases de E, Yu € E, Coordg(u) = Pg, g Coordg (u) ‘

/
n Ly

En effet u = Zx}ce; donc  Coordg(u) = Za:;cCoordgg(e;f) = Matg(#') | : | = Pg,w Coordg (u)
k=1 k=1

~

Coord z(u) = Py, » Coord »(u)

Remarques :
e en notant : X = Coordg(u) , X' = Coordg (u) et P = Py g

X =PX' X' =plXx

e Certains trouvent le nom ”"matrice de passage de # & %’ contre-intuitif.
en effet : pour passer de X & X’ on applique X — Py X
Exemples : Voir Feuille_Cours_6_5
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9.3 Changement de bases, action sur la matrice d’un endomorphisme.

Théoréme

Soient & et %A’ deux bases de E.

Vf S X(E) Mat(@/(f) = P@/,,@Mat@(f) P,@,,@’

En effet : Pour u € F,

Coordg (f(u)) P zCoordg(f(u))

P gMatgz(f)Coordg(u)

Yu € E, Coordg (f(u)) Po aMatz(f)Pg z Coordg (u)

Mat g/ (f)

Ici il faut se rappeler que :

Matgz 2 (f) est I'unique matrice A € ), p(R) vérifiant : Vu € E, Coordg (f(u)) = ACoordgs(u)

e Il y a plusieurs démonstration de cette formule, mais a la fin il faut trouver un moyen de la retenir .

Mat »(f) = Py sMaty(f) Py,

e Si on note M = Matg(f), M' = Matg (f) et P = Py g4 alors :

M =P 'MP
et
M=prM' P!

Remarque : (Plus compréhensible apreés le chapitre sur la diagonalisation).

On passe souvent d'une base % & une base %’ dans laquelle la matrice M’ = A est plus simple
(diagonale ou triangulaire).
on a alors avec la formule du changement de base en notant P = Pz g :

A=P'MP
on en déduit la relation :
M = PAP~!
Exemple :
2 0 0 01 0 1 0 0
A=|3 4 -3|, P=|10 1|, D=0 2 0], A=PDP1|
1 0 1 1 1 0 0 0 4
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Matrices semblables

Dans ce paragraphe toutes les matrices sont carrées.

Définition :

Soient M et N deux matrices de .4, (K),

dire que M est semblable & N signifie qu'il existe une matrice P inversible de ., (K) telle que :

M=P NP

Exemple et contre exemple.

2 1 2 0
1. M = (O 3> et N = (0 3> sont semblables.

11 10
2. M = <0 1) et N = (O 1) ne sont pas semblables.

Attention : une telle matrice P n’est pas unique.

En effet :

Proposition

1. M est semblable & M. (réflexif)
2. Si M est semblable & N alors N est semblable & M. (symétrique)
3. Si Mj est semblable & My et My est semblable & M3 alors Mj est semblable a Ms.

(transitive)

Démonstration.

Caractérisation.

Soient M et N deux matrices de ., (K),

M et N sont semblables si, et seulement si,

elles sont les matrices d’'un méme endomorphisme dans deux bases.

Démonstration.

Autrement dit :

Deux matrices M et N de .#,(K) sont semblables si, et seulement si, :
pour un espace E de dimension n, un endomorphisme f de E et deux bases %, £’ de E, on a :

M = Matg (f) et N = Matg(f)

M et N représentent le méme endomorphisme dans deux bases.
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Théoréme :

Si deux matrices M et N sont semblables avec pour P inversible la relation N = P~ M P alors

Vn € N, N =p-lymmp

Démonstration. voir feuille Cours_6_5 Ex 5

Remarques :
e si M et N sont semblables alors pour tout n € N,  M™ et N™ le sont aussi.

e On utilise les matrices semblables pour calculer les puissances de matrice.

Proposition

Soit A € K,

M est semblable a A\I,, si, et seulement si, M = AIL,.

En effet :

Théoréme : (complément)

Soient A et B deux matrices de .4, (K),
Si A et B sont semblables alors rg(A) = rg(B).

Démonstration. voir feuille Cours_6_5 Ezx 10

Remarque : La réciproque est fausse, voir feuille Cours_6_5 Fx 9

Théoréme : (complément)

Soient A et B deux matrices de ., (K),
Si A et B sont semblables alors tr(A4) = tr(B).

Démonstration. voir feuille Cours_6_5 Ezx 6
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