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Introduction

Dans ce paragraphe on travaille dans E un espace vectoriel sur K = R ou C.

Lors d’une mesure d’absorbance, on met en évidence des fréquences caractéristiques propre à une molécule. Ici
nous allons mettre en évidence des valeurs propres à des endomophismes. (Etude spectrale)

Sachant qu’une matrice carrée peut être vue comme un endomorphisme, toutes les définitions sur les endomor-
phismes seront encore valables pour les matrices.

On étudie souvent des phénomènes modélisés par des relations un+1 = f(un) ou Xn+1 = MXn.

On s’intéresse ici au ”direction fixe” : autrement dit les vecteurs u vérifiant u ̸= 0E et f(u) et u sont colinéaires.

Ces directions privilégiées sont dirigées par les vecteurs appelés vecteurs propres de f .

Exemples :
• Avec f : (x, y) 7→ (2x+ y, x+ 2y) avec u = (1, 1) et v = (1,−1)

• Avec M =

(
1 1
1 1

)
avec X1 =

(
2
2

)
ou X2 =

(
1
−1

)
Remarque : dans certains cas il existe des endomorphismes sans vecteurs propres.

Exemples :
• Dans R les matrices de rotations.

• Dans R[X], P 7→ XP .

Si u est un vecteur propre de f alors il existe λ ∈ K tel que f(u) = λu, ce nombre est appelé valeur propre de f .

L’ensemble des valeurs propres de f est appelé : spectre de f .

Nous verrons des définitions précises de ces notions pour f et pour M .

Nous verrons des théorèmes montrant des propriétés sur ces éléments :
• Nombres de valeurs propres.

• Liberté des vecteurs propres.

En dimension finie : Etudier les endomorphismes revient à étudier les matrices associées une fois une base choisie.

On se placera ensuite dans le cas où f possède une base de vecteurs propres : f est alors dit diagonalisable.

Dans ce cas il sera simple d’étudier fn donc des modèles de la forme un+1 = f(un)

On pourra aussi résoudre des systèmes différentielles linéaires en changeant de base.
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2
Eléments propres.

2.1 Eléments propres d’un endomorphisme.

2.1.1 Valeurs propres. Spectre.

Définition (Valeur propre d’un endomorphisme)

Soient E un espace vectoriel, f un endomorphisme de E et λ ∈ K
Dire que λ est une valeur propre de f signifie que :

il existe un vecteur u non nul de E tel que f(u) = λu.

En pratique : (caractérisations)

Montrer qu’ ”un scalaire λ est une valeur propre de f” revient à savoir s’
”il existe un vecteur u non nul vérifiant f(u) = λu”

c’est équivalent à ”pour un certain vecteur u non nul on a : f(u)− λu = 0E”
c’est équivalent à ”il existe un vecteur u non nul vérifiant (f − λIdE)(u) = 0E”
c’est équivalent à ”il existe un vecteur u non nul appartenant à ker(f − λIdE)”
c’est équivalent à ” ker(f − λIdE) ̸= {0E} ”
c’est équivalent à ”l’endomorphisme f − λIdE n’est pas injectif ”.

Si de plus E est de dimension finie ( dim(E) = n ) :
c’est équivalent à ”l’endomorphisme f − λIdE n’est pas bijectif ”.
c’est équivalent à ” rg(f − λIdE) < n ”.

Remarques autour de la valeur propre 0 :
• 0 est une valeur propre de f si, et seulement si, f n’est pas injective .

• 0 est une valeur propre de f si, et seulement si, ker(f) ̸= {0E}

Définition (Spectre.)

Soient E un espace vectoriel et f un endomorphisme de E,

On appelle spectre de f l’ensemble des valeurs propres de f . (on note : Sp(f)).

2.1.2 Vecteurs propres. Sous-espaces propres.

Définition (Vecteur propre d’un endomorphisme)

Soient E un espace vectoriel, f un endomorphisme de E et u ∈ E

Dire que u est une vecteur propre de f signifie que :

➊ u est non nul et ➋ il existe un λ ∈ K tel que f(u) = λu.

Définition (Vecteur propre et valeur propre associés)

Soient E un espace vectoriel, f un endomorphisme de E, u ∈ E et λ ∈ K
Dire que u est une vecteur propre de f associé à la valeur propre λ signifie que :

➊ u est non nul et que ➋ f(u) = λu.
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Définition (Sous-espace propre associé à une valeur propre.)

Soient E un espace vectoriel, f un endomorphisme de E et λ ∈ K
Lorsque λ est une valeur propre de f

l’ensemble des vecteurs u vérifiant f(u) = λu est appelé sous-espace propre de f associé à λ.

On le note : Eλ(f)

Eλ(f) =
{
u ∈ E | f(u) = λu

}
Remarques :

• Eλ(f) = ker(f − λIdE) En effet : f(u) = λu ⇐⇒ ............................

• 0E appartient à Eλ(f)

• Eλ(f) est l’ensemble des vecteurs propres de f complété par 0E .

• Eλ(f) est un sous-espace vectoriel de E. En effet : ............................

Théorème En dimension finie

Soient E un espace vectoriel de dimension n et f un endomorphisme de E.

Pour tout λ ∈ Sp(f), ➊ dim(Eλ(f)) = n− rg(f − λIdE)

➋ dim(Eλ(f)) ⩾ 1

En effet : Théorème du rang appliqué à f − λIdE ,

2.2 Eléments propres d’une matrice carrée.

Dans ce paragraphe comme dans le cours sur les applications linéaires, on adapte toutes les définitions en confon-
dant la matrice carrée M et l’endomorphisme de Mn,1(K) qui à X associe MX.

Ici n est un entier naturel non nul.

2.2.1 Valeurs propres. Spectre.

Définition (Valeur propre d’une matrice carrée)

Soient M une matrice de Mn(K) et λ ∈ K
Dire que λ est une valeur propre de M signifie que :

il existe une matrice colonne X non nulle de Mn,1(K) telle que MX = λX.

En pratique : (caractérisation).

Montrer qu’ ”un scalaire λ est une valeur propre de M” revient à savoir s’
”il existe une colonne X non nulle vérifiant MX = λX”.

c’est équivalent à ”le système (M − λIn)X = 0 admet une solution non nulle”

c’est équivalent à ” la matrice (M − λIn) n’est pas inversible ”.

c’est équivalent à ” rg(M − λIn) < n ”.

c’est équivalent à ” ker(M − λIn) ̸= {0n,1} ”

Remarques : (cas particulier de la valeur propre 0)
• 0 est une valeur propre de M si, et seulement si, rg(M) ̸= n.
• 0 est une valeur propre de M si, et seulement si, M n’est pas inversible.

Définition (Spectre.)

Soit M ∈ Mn(K),

On appelle spectre de M l’ensemble des valeurs propres de M . (on note : Sp(M)).
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2.2.2 Vecteurs propres. Sous-espaces propres.

Définition (Vecteur propre d’une matrice)

Soient M ∈ Mn(K) et X ∈ Mn,1(K)

Dire que X est une vecteur propre de M signifie que :

➊ X est non nulle et ➋ il existe un λ ∈ K tel que MX = λX.

Définition (Vecteur propre et valeur propre associée)

Soient M ∈ Mn(K), X ∈ Mn,1(K) et λ ∈ K.

Dire que X est une vecteur propre de M associé à la valeur propre λ signifie que :

➊ X est non nulle et ➋ MX = λX.

Définition (Sous-espace propre associée à une valeur propre.)

Soient M ∈ Mn(K) et λ ∈ K.

Si λ est une valeur propre de M , alors
l’ensemble des X ∈ Mn,1(K) telles que MX = λX est appelé sous-espace propre de M associé à λ.

On le note : Eλ(M)

Eλ(M) =
{
X ∈ Mn,1(K) | MX = λX

}
Remarques :

• Eλ(M) = ker(M − λIn)

• C’est l’ensemble des vecteurs propres associés à la valeur propre λ complété par la colonne nulle.

• C’est un sous-espace vectoriel de matrices colonnes.
(Démonstration : c’est le noyau d’un endomorphisme de Mn,1(K))

Proposition. (Dimension d’un sous-espace propre).

Soit M ∈ Mn(K),

pour tout λ ∈ Sp(M), ➊ dim(Eλ(M)) = n− rg(M − λIn)

➋ dim(Eλ(M)) ⩾ 1

Démonstration : Théorème du rang appliqué à la matrice M − λIn .

2.2.3 Cas des matrices triangulaires.

Théorème.

Soit M ∈ Mn(K),

si M est triangulaire (supérieure ou inférieure)
alors les valeurs propres de M sont les coefficients diagonaux de M .

Démonstration.

Autrement dit : un scalaire λ est une valeur propre de M si, et seulement si, λ ∈
{
mi,i | i ∈ [[1;n]]

}
2.2.4 Cas des matrices diagonales.

Proposition.

Soit (α1, ..., αn) ∈ Kn, on note ∆ = Diag(α1, ... , αn)

➊ Sp(∆) = {αi | i ∈ [[1, n]] }
➋ pour tout λ ∈ Sp(∆), dim(Eλ(∆) = card({i ∈ [[1;n]] | αi = λ })

Démonstration.

Autrement dit ➋ :
la dimension de l’espace propre de ∆ associé à λ est égale au nombre d’apparitions de λ sur la diagonale.

Attention : La proposition ➋ est fausse pour une matrice triangulaire. Exemple :
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2.2.5 Résultats classiques.

(A savoir redémontrer)

Transposée.

Somme des lignes (resp. des colonnes) constantes.

Polynôme annulateur.

Voir la feuille cours 7

2.3 Lien entre matrice et endomorphisme.

Ici E est un K-espace vectoriel de dimension n ∈ N∗.

Théorème ( Valeur propre.)

Soient f ∈ L (E), λ ∈ K et B une base quelconque de E,

λ est une valeur propre de f si, et seulement si, λ est une valeur propre de MatB(f).

En effet :

Corollaire ( Spectre.)

Soient f ∈ L (E) et λ ∈ K, pour toute base B de E, Sp(f) = Sp
(
MatB(f)

)
.

En effet :

Corollaires :

➊ Si B et B′ sont deux bases de E, alors Sp
(
MatB(f)

)
= Sp

(
MatB′(f)

)
.

➋ Pour A et B deux matrices carrées, si A et B sont semblables alors Sp(A) = Sp(B)

En effet :

Théorème (Vecteurs propres .)

Soient f ∈ L (E), u ∈ E, λ ∈ K et B une base de E.

u est un vecteur propre de f associé à la valeur propre λ

si, et seulement si, CoordB(u) est un vecteur propre de MatB(f) associé à la valeur propre λ

En effet :

Propositions (Sous-espaces propres.)

Soient f ∈ L (E), u1, ..., um des vecteurs de E, λ ∈ Sp(f) et B une base de E,

on note M = MatB(f) et pour tout i ∈ [[1;m]], Xi = CoordB(ui),

➊ (X1, ... , Xm) est une base de Eλ(M) si, et seulement si, (u1, ... , um) est une base de Eλ(f)

➋ dim(Eλ(M)) = dim(Eλ(f))

En effet :

Corollaires :

➀ Si B et B′ sont deux bases de E, alors dim
(
Eλ

(
MatB(f)

))
= dim

(
Eλ

(
MatB′(f)

))
.

➁ Pour A et B deux matrices carrées,

Si A et B sont semblables alors ∀λ ∈ Sp(A), dim(Eλ(A)) = dim(Eλ(B))

En effet :
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3
Propriétés des familles de vecteurs propres.

Soient E un espace vectoriel, f un endomorphisme de E et m un entier naturel non nul.

3.1 Vecteurs propres associés à des valeurs propres distinctes.

Théorème.

Soient u1, ..., um des vecteurs de E et λ1, ..., λm des scalaires.

Si λ1, ..., λm sont m valeurs propres distinctes et
si u1, ..., um sont des vecteurs propres associés respectivement à λ1, ..., λm,

alors (u1, ..., um) est une famille libre.

Démonstration : (Voir feuille 8 ter)

3.2 Juxtaposition des bases des sous-espaces propres.

Théorème.

Soient B1, ... ,Bm des familles de vecteurs de E et λ1, ... , λm des scalaires.

Si λ1, ... , λm sont m valeurs propres distinctes et
si B1, ... ,Bm sont respectivement des bases des sous espaces propres Eλ1

(f), ... , Eλm
(f),

alors (B1, ... ,Bm)︸ ︷︷ ︸
juxtaposition des bases

est une famille libre.

Démonstration : (Voir feuille 8 ter)

3.3 En dimension finie.

3.3.1 Des valeurs propres distinctes.

Théorèmes.

• Soient n un entier naturel non nul, E un espace vectoriel, f un endomorphisme de E.

Si E est de dimension n alors f a au plus n valeurs propres distinctes.

• Soient n un entier naturel non nul, les matrices de Mn(K) ont au plus n valeurs propres distinctes.

En effet :

Remarque : Si on a trouvé n valeurs propres distinctes, il est alors inutile de chercher, on les a toutes.

Exemples : (Sans calcul trouver le spectre des matrices suivantes)

(
2 1
2 1

) 1 1 0
1 1 0
0 0 1


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Théorème.

Soient E un espace vectoriel de dimension finie, f un endomorphisme de E et m un entier naturel non nul,

λ1, ..., λm des scalaires.

Si λ1, ..., λm sont m valeurs propres distinctes de f alors

m∑
k=1

dim(Eλk
(f)) ⩽ dim(E)

En effet :

Remarque : Si on a trouvé m valeurs propres λ1, ..., λm distinctes et que

m∑
k=1

dim(Eλk
(f)) = dim(E) , il est alors

inutile de chercher, on les a toutes.

Théorème.

Soit MMn(K) et m un entier naturel non nul, λ1, ..., λm des scalaires.

Si λ1, ..., λm sont m valeurs propres distinctes de M alors

m∑
k=1

dim(Eλk
(M)) ⩽ dim(E)

En effet :

Remarque : Si on a trouvé m valeurs propres λ1, ..., λm distinctes et que

m∑
k=1

dim(Eλk
(f)) = dim(E) , il est alors

inutile de chercher, on les a toutes.

Exemples : (Sans calcul trouver le spectre des matrices suivantes)
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


1 1 1
1 1 1
1 1 1



Rappel utile ici : on peut calculer dim(Eλ(M)) avec la relation : dim(Eλ(M)) = n− rg(M − λIn)
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4
Diagonalisation.

Soit E un espace vectoriel de dimension finie.

4.1 Définition.

4.1.1 Pour un endomorphisme.

Définition

Soit f un endomorphisme de E,

dire que f est diagonalisable signifie qu’il existe une base B de E telle que MatB(f) est diagonale.

Autrement dit :

f est diagonalisable si, et seulement si, E possède une base constituée de vecteurs propres de f .

Vocabulaire. ”Diagonaliser f” signifie trouver une base de E pour laquelle MatB(f) est diagonale.

Remarque : Certains endomorphismes ne sont pas diagonalisables. Exemple :

Exemples. (Voir Feuille Exo 16)

4.1.2 Pour une matrice carrée.

Définition.

Soit M ∈ Mn(K), ,

dire que M est diagonalisable signifie que M est semblable à une matrice diagonale.

Remarque : Certaines matrices ne sont pas diagonalisables.

Vocabulaire. ” Diagonaliser M” signifie trouver deux matrices :

{
P inversible
∆ diagonale

, telles que M = P∆P−1

Exemples. (Voir Feuille Exo 16)

Théorème.

Soient f un endomorphisme de E et B une base de E

f est diagonalisable si, et seulement si, MatB(f) est diagonalisable.

Remarques :

• Les matrices diagonales sont diagonalisables.
(En particulier la matrice nulle et la matrice identité de Mn(K) sont diagonalisables).

• Pour A et B sont semblables alors (A est diagonalisable si, et seulement si, B est diagonalisable).

• Vu en exercice : Si M = P∆P−1 alors la trace 1 de M est égale à celle de ∆

Autrement dit : Si M est diagonalisable alors tr(M) =
∑

λsp(M)

λ dim(Eλ(M))

1. On rappelle que la notion de trace n’est pas au programme.
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4.2 Condition suffisante.

Théorème. (Condition suffisante pour qu’un endomorphisme soit diagonalisable).

Soit f ∈ L (E) et que E est de dimension n,

Si f possède n valeurs propres distinctes alors f est diagonalisable.

et tous les sous-espaces propres sont de dimension 1.

Démonstration

Théorème. (Condition suffisante pour qu’une matrice carrée soit diagonalisable)

Soit M ∈ Mn(K), Si M possède n valeurs propres distinctes alors M est diagonalisable.

et tous les sous-espaces propres sont de dimension 1.

Démonstration

Attention :

Si M (ou f) n’a pas n valeurs propres distinctes alors on ne peut rien conclure avec ce théorème.

4.3 Condition nécessaire et suffisante.

Théorème. (Condition nécessaire et suffisante pour qu’un endomorphisme soit diagonalisable).

Soit f ∈ L (E) (et que E est de dimension n),

f est diagonalisable si, et seulement si,
la somme des dimensions des sous-espaces propres de f est égale à n.

Démonstration.

Autrement dit : (Encore une occasion de comprendre la notion d’équivalence)

• Si
∑

λ∈Sp(f)

dim (Eλ(f)) = n alors f est diagonalisable

• Sinon f n’est pas diagonalisable

Théorème. (Condition nécessaire et suffisante pour qu’une matrice carrée soit diagonalisable).

Soit M ∈ Mn(R),
M est diagonalisable si, et seulement si,

la somme des dimensions des sous-espaces propres de M est égale à n.

Démonstration.

Autrement dit :

• Si
∑

λ∈Sp(M)

dim (Eλ(M)) = n alors M est diagonalisable

• Sinon f n’est pas diagonalisable

Exemple :

M1 =

1 1 0
0 2 0
0 0 2

 et M2 =

1 0 0
0 2 1
0 0 2


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4.4 En pratique pour les matrices carrées.

M ∈ Mn(K).

On a montré que M est diagonalisable avec l’un des théorèmes précédents et on a trouvé une base de chaque
sous-espace propre et en les juxtaposant on a une base de vecteurs propres,

autrement dit on a :

(U1, U2, ... , Un) une base de Mn,1(K) et (λ1, ... , λn) ∈ Kn tels que :

MU1 = λ1U1, MU2 = λ2U2, · · · , MUn = λnUn (∗)

On note P la matrice de (U1, U2, ... , Un) dans la base canonique de Mn,1(K) et ∆ = Diag(λ1, ... , λn),

d’une part (U1, U2, ... , Un) est une base donc P est inversible

et d’autre part on a :

M = P∆P−1

➊ Première explication.

Les relations (∗) peuvent s’écrire :

M
(
U1

∣∣U2

∣∣ · · · ∣∣Un

)
=

(
λ1U1

∣∣λ2U2

∣∣ · · · ∣∣λnUn

)
ou encore

MP = P∆

et comme P est inversible, on obtient

M = P∆P−1

➋ Deuxième explication.

On note f : X 7−→ MX, C la base canonique de Mn,1(K) et B la base (U1, U2, ... , Un)

P est la matrice de changement de base de C à B, M = MatC (f) et ∆ = MatB(f),

la formule de changement de variable donne : ∆ = P−1MP ou encore :

M = P∆P−1

En résumé :

Si P est la matrice d’une base de vecteurs propres de M ∈ Mn(R) alors M = P∆P−1

4.5 Application au calcul de puissance de matrices carrées.

Lorsque M est diagonalisable il est simple de calculer les puissances de M

Si M = P



λ1 0 · · · · · · 0

0 λ2

. . .
...

...
. . .

. . .
. . .

...
...

. . . λn−1 0
0 · · · · · · 0 λn


P−1 alors pour tout k ∈ N, Mk = P



λk
1 0 · · · · · · 0

0 λk
2

. . .
...

...
. . .

. . .
. . .

...
...

. . . λk
n−1 0

0 · · · · · · 0 λk
n


P−1

4.6 Application aux systèmes différentielles linéaires.

X ′(t) = MX(t) ⇐⇒ P−1X ′(t) = ∆P−1X(t)
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5
Matrice symétrique réelle.

Théorème. (Provisoire)

Soit M une matrice carrée,

Si M est à coefficients réels et M est symétrique alors M est diagonalisable dans Mn(R).

Théorème admis.

Plus précisément pour une matrice carrée M ,

Si

{
M⊤ = M

∀(i, j) ∈ R2,mi,j ∈ R alors il existe deux matrices de Mn(R) :
{

P inversible
∆ diagonale

, telles que M = P∆P−1.

En particulier :

➊ ∆ ∈ Mn(R) donc les valeurs propres de M sont réels.

➋ P ∈ Mn(R) donc M possède une base de vecteurs propres réels.

Exemples.

Les matrices suivantes sont diagonalisables dans Mn(R) (en particulier leur spectre est inclus dans R).(
1 3
3 2

) 1 2 3
2 0 5
3 5 6

 1 2 3
2 0 5
3 5 6

 M =
(
i+ j

)
1⩽i⩽n
1⩽j⩽n

Attention
➊ ne pas oublier ”à coefficients réels”, voir l’exemple ci-dessous :

La matrice

(
1 i
i −1

)
est symétrique, mais elle n’est pas diagonalisable.

➋ Une matrice de Mn(R) peut-être diagonalisable dans Mn(C) mais pas dans Mn(R).

La matrice de

(
0 1
−1 0

)
n’est pas diagonalisable dans Mn(R) car elle n’a pas de valeur propre réelle,

en revanche elle diagonalisable dans Mn(C) car elle a deux valeurs propres i et −i.

plus précisément :

(
0 1
−1 0

)
= P

(
i 0
0 −i

)
P−1 avec P =

(
1 1
i −i

)

➌ Dans Mn(C), une matrice symétrique à coefficients réels possède des vecteurs propres à coefficients complexes,(
1 1
1 1

)(
i
i

)
= 2

(
i
i

)
Nous prolongerons bientôt ce théorème par :

Si

{
M⊤ = M
∀(i, j) ∈ [[1, n]]2,mi,j ∈ R alors il existe deux matrices de Mn(R) :

{
P inversible
∆ diagonale

, telles que

{
M = P∆P−1

P−1 = P⊤

Autrement dit :

Toute matrice carrée symétrique réelle est diagonalisable dans une base orthonormée.
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