Introduction

Dans ce paragraphe on travaille dans E un espace vectoriel sur K =R ou C.

Lors d’une mesure d’absorbance, on met en évidence des fréquences caractéristiques propre a une molécule. Ici
nous allons mettre en évidence des valeurs propres & des endomophismes. (Ftude spectrale)

Sachant qu’une matrice carrée peut étre vue comme un endomorphisme, toutes les définitions sur les endomor-
phismes seront encore valables pour les matrices.

On étudie souvent des phénomenes modélisés par des relations u, 1 = f(u,) ou X1 = MX,,.
On s’intéresse ici au ”direction fixe” : autrement dit les vecteurs u vérifiant u # Og et f(u) et u sont colinéaires.
Ces directions privilégiées sont dirigées par les vecteurs appelés vecteurs propres de f.

Exemples :
o Avec f: (xz,y) — 2z +y,z+ 2y) avec u = (1,1) et v = (1,—1)

11 2 1
o Avec M = <1 1> avec X1 = (2> ou Xy = <_1>
Remarque : dans certains cas il existe des endomorphismes sans vecteurs propres.

Exemples :
e Dans R les matrices de rotations.

e Dans R[X], P — XP.
Si u est un vecteur propre de f alors il existe A € K tel que f(u) = Au, ce nombre est appelé valeur propre de f.
L’ensemble des valeurs propres de f est appelé : spectre de f.
Nous verrons des définitions précises de ces notions pour f et pour M.

Nous verrons des théorémes montrant des propriétés sur ces éléments :
e Nombres de valeurs propres.

e Liberté des vecteurs propres.
En dimension finie : Etudier les endomorphismes revient & étudier les matrices associées une fois une base choisie.
On se placera ensuite dans le cas ou f posséde une base de vecteurs propres : f est alors dit diagonalisable.
Dans ce cas il sera simple d’étudier f™ donc des modeles de la forme w,11 = f(uy)

On pourra aussi résoudre des systemes différentielles linéaires en changeant de base.



Eléments propres.

2.1 Eléments propres d’un endomorphisme.

2.1.1 Valeurs propres. Spectre.

Définition ( Valeur propre d’un endomorphisme)

Soient E un espace vectoriel, f un endomorphisme de E et A € K

Dire que X est une valeur propre de f signifie que :

il existe un vecteur v non nul de E tel que f(u) = Au.

En pratique : (caractérisations)

bEb

Montrer qu’ ”un scalaire A est une valeur propre de f” revient a savoir s’
il existe un vecteur w non nul vérifiant f(u) = Au”
c’est équivalent & ”pour un certain vecteur u non nul on a : f(u) — Au = 0g”
c’est équivalent & il existe un vecteur u non nul vérifiant (f — A dg)(u) = 0g”
c’est équivalent &  ”il existe un vecteur u non nul appartenant a ker(f — Aldg)”
c’est équivalent & 7 [ker(f — Mdg) # {0g}]”
c’est équivalent & ”I’endomorphisme f — A dg n’est pas injectif ”.
Si de plus F est de dimension finie ( dim(E) =n ) :
c’est équivalent & ”I’endomorphisme f — AIdg n’est pas bijectif ”.
c’est équivalent & 7 [rg(f — Mdg) <n| 7.

Remarques autour de la valeur propre 0 :
e ( est une valeur propre de f si, et seulement si, ’ f n’est pas injective‘.

e 0 est une valeur propre de f si, et seulement si, ker(f) # {0g}

Définition (Spectre.)

Soient E un espace vectoriel et f un endomorphisme de F,

On appelle spectre de f l'ensemble des valeurs propres de f.  (on note : Sp(f)).

2.1.2 Vecteurs propres. Sous-espaces propres.

Définition ( Vecteur propre d’un endomorphisme)

Soient E un espace vectoriel, f un endomorphisme de E et u € E
Dire que u est une vecteur propre de f signifie que :
O uestnonnul et @ ilexiste un A € K tel que f(u) = Au.

Définition ( Vecteur propre et valeur propre associés)

Soient E un espace vectoriel, f un endomorphisme de E, u € F et A € K
Dire que u est une vecteur propre de f associé a la valeur propre A signifie que :

O uestnonnul et que @ f(u)=N\u.




Définition (Sous-espace propre associé a une valeur propre.)

Soient E un espace vectoriel, f un endomorphisme de F et A € K

Lorsque A\ est une valeur propre de f
Pensemble des vecteurs u vérifiant f(u) = Au est appelé sous-espace propre de f associé a .

On le note : Ex(f)

Ex(f)={ueE]| f(u)=)u}
Remarques :
E\(f) = ker(f — MdEg) En effet : f(u) = \u <~
e Op appartient & E)\(f)

E\(f) est 'ensemble des vecteurs propres de f complété par 0.

e FE)\(f) est un sous-espace vectoriel de E. En effet :

Théoréme En dimension finie

Soient E un espace vectoriel de dimension n et f un endomorphisme de E.
Pour tout A € Sp(f), O dim(EN(f)) =n—rg(f — Mdg)
0 dim(E\(f)) =1

En effet : Théoreme du rang appliqué a f — ANl dg,

2.2 Eléments propres d’une matrice carrée.

Dans ce paragraphe comme dans le cours sur les applications linéaires, on adapte toutes les définitions en confon-
dant la matrice carrée M et l'endomorphisme de M, 1(K) qui ¢ X associe MX.

Ici n est un entier naturel non nul.

2.2.1 Valeurs propres. Spectre.

Définition (Valeur propre d’une matrice carrée)

Soient M une matrice de .#,(K) et A €K

Dire que A est une valeur propre de M signifie que :

il existe une matrice colonne X non nulle de ., 1 (K) telle que M X = AX.

En pratique : (caractérisation).

0

un scalaire A est une valeur propre de M” revient a savoir s’
71l existe une colonne X non nulle vérifiant M X = A X".
c’est équivalent &  ”le systeme (M — AI,,) X = 0 admet une solution non nulle”

Montrer qu

c’est équivalent & 7 ]1a matrice (M — A\I,,) n’est pas inversible"’.

c’est équivalent & 7 [ rg(M — AI,) <n|”.
ker(M — A1,,) # {01}

7 »

c’est équivalent a

Remarques : (cas particulier de la valeur propre 0)
e 0 est une valeur propre de M si, et seulement si, rg(M) # n.
e 0 est une valeur propre de M si, et seulement si, M n’est pas inversible.

Définition (Spectre.)

Soit M € #,(K),
On appelle spectre de M 'ensemble des valeurs propres de M. (on note : Sp(M)).




2.2.2 Vecteurs propres. Sous-espaces propres.

Définition ( Vecteur propre d’une matrice)

Soient M € A, (K) et X € A, 1(K)
Dire que X est une vecteur propre de M signifie que :
O X est nonnulle et @ ilexisteun A € K tel que M X = \X.

Définition ( Vecteur propre et valeur propre associée)

Soient M € #4,(K), X € #,1(K) et A € K.
Dire que X est une vecteur propre de M associé a la valeur propre A signifie que :
O X estnonnulle et @ MX =M)X.

Définition (Sous-espace propre associée & une valeur propre.)

Soient M € #,(K) et A € K.

Si A est une valeur propre de M, alors
I'ensemble des X € #,, 1(K) telles que M X = AX est appelé sous-espace propre de M associé & A.

On le note : E)(M)

Ex(M) = { X € Mo (K) | MX =X }
Remarques :
o | Ex(M) =ker(M — )I,,) |

o (C’est ’ensemble des vecteurs propres associés a la valeur propre A complété par la colonne nulle.

e C’est un sous-espace vectoriel de matrices colonnes.
(Démonstmtion : c’est le noyau d’un endomorphisme de ///n,l(K))

Proposition. (Dimension d’un sous-espace propre).

Soit M € #,,(K),
pour tout A € Sp(M), O dim(E\(M)) =n—rg(M — \,)
0 dim(E,\(M))>1

Démonstration : Théoréme du rang appliqué a la matrice M — I, .

2.2.3 Cas des matrices triangulaires.
Théoréme.

Soit M € .#,(K),

si M est triangulaire (supérieure ou inférieure)
alors les valeurs propres de M sont les coefficients diagonaux de M.

Démonstration.

Autrement dit : un scalaire A est une valeur propre de M si, et seulement si, A € { m;; | i€ [1;n] }

2.2.4 Cas des matrices diagonales.

Proposition.

Soit (a1, ..., ) € K", on note A = Diag(ay, ..., ay)
0 Sp(A)={a;i|ie[Ln]}
@ pour tout A € Sp(A), dim(Ex(A) =card({i € [1;n] | s =X })

Démonstration.

Autrement dit @
la dimension de ’espace propre de A associé & \ est égale au nombre d’apparitions de A sur la diagonale.

Attention : La proposition @ est fausse pour une matrice triangulaire. Exemple :



2.2.5 Résultats classiques.

(A savoir redémontrer)

Transposée.

Somme des lignes (resp. des colonnes) constantes.
Polynéme annulateur.

Voir la feuille_cours_7

2.3 Lien entre matrice et endomorphisme.
Ici F est un K-espace vectoriel de dimension n € N*.

Théoreme ( Valeur propre.)

Soient f € Z(E), A € K et £ une base quelconque de F,

A est une valeur propre de f si, et seulement si, A est une valeur propre de Matg(f).

En effet :

Corollaire ( Spectre.)

Soient f € Z(E) et A €K, pour toute base # de E, Sp(f)= Sp(Matz(f)).

En effet :
Corollaires :

0 Si # et A’ sont deux bases de E, alors Sp(Matg(f)) = Sp(Mata (f)).

@ Pour A et B deux matrices carrées, si A et B sont semblables alors Sp(A) = Sp(B)
En effet :

Théoréme (Vecteurs propres .)

Soient f € Z(F),u € E, A€ K et 2 une base de E.

u est un vecteur propre de f associé a la valeur propre A

si, et seulement si, Coordg(u) est un vecteur propre de Matg(f) associé a la valeur propre A

En effet :

Propositions (Sous-espaces propres.)

Soient f € Z(FE), u, ..., un, des vecteurs de E, A € Sp(f) et % une base de E,
on note M = Matg(f) et pour tout i € [1;m], X; = Coordg(u;),
O (X1,...,X,,) est une base de E)(M) si, et seulement si, (u1, ..., U, ) est une base de Ex(f)
@ dim(E,(M)) = dim(Ex(f))

En effet :

Corollaires :

@ Si & et A’ sont deux bases de E, alors dim (Ex(Matg(f))) = dim (Ex(Matz (f))).

@ Pour A et B deux matrices carrées,

Si A et B sont semblables alors VA € Sp(4), dim(Ey(A)) = dim(Ex(B))

En effet :



Propriétés des familles de vecteurs propres.

Soient E un espace vectoriel, f un endomorphisme de E et m un entier naturel non nul.

3.1 Vecteurs propres associés a des valeurs propres distinctes.

Théoréme.

Soient w1, ..., U, des vecteurs de E' et Ay, ..., A, des scalaires.

Si Ay, ..., Ay, sont m valeurs propres distinctes et
si uq,..., U, sont des vecteurs propres associés respectivement a Aq, ..., A\,

alors (uq, ..., Uy,) est une famille libre.

Démonstration : (Voir feuille_8_ter)

3.2 Juxtaposition des bases des sous-espaces propres.

Théoréme.
Soient Ay, ..., By, des familles de vecteurs de E et Aq,..., A, des scalaires.
Si A1, ..., Ay sont m valeurs propres distinctes et
si %, ..., By sont respectivement des bases des sous espaces propres Ey, (f), ..., Ex,, (f),

alors  (%1,...,%,) est une famille libre.
—_———

juxtaposition des bases

Démonstration : (Voir feuille_8_ter)

3.3 En dimension finie.

3.3.1 Des valeurs propres distinctes.

Théorémes.

e Soient n un entier naturel non nul, £ un espace vectoriel, f un endomorphisme de FE.

Si F est de dimension n alors f a au plus n valeurs propres distinctes.

e Soient n un entier naturel non nul,

les matrices de .#,(K) ont au plus n valeurs propres distinctes.

En effet :

Remarque : St on a trouvé n valeurs propres distinctes, il est alors inutile de chercher, on les a toutes.

Exemples : (Sans calcul trouver le spectre des matrices suivantes)

9 1 1 10
2 1 1 10
0 01



Théoréme.

Soient E un espace vectoriel de dimension finie, f un endomorphisme de E et m un entier naturel non nul,

A1y .oy A des scalaires.

Si A1,...; Ay sont m valeurs propres distinctes de f alors Z dim(Ey, (f)) < dim(F)
k=1

En effet :

m

Remarque : Si on a trouvé m valeurs propres A1, ..., Ay, distinctes et que Z dim(Ey, (f)) = dim(E) , il est alors
k=1

inutile de chercher, on les a toutes.

Théoréeme.

Soit M.#,,(K) et m un entier naturel non nul, Ay, ..., A, des scalaires.

Si A1y ..., A, sont m valeurs propres distinctes de M alors Z dim(E), (M)) < dim(E)
k=1

En effet :
Remarque : Si on a trouvé m valeurs propres A1, ..., Ay, distinctes et que Z dim(Ey, (f)) = dim(F) , i est alors
k=1
inutile de chercher, on les a toutes.
Exemples : (Sans calcul trouver le spectre des matrices suivantes)
1 0 00
001 0 Lo
01 0O 111
0 0 0 1

Rappel utile ici : on peut calculer dim(E\(M)) avec la relation : dim(Ey\(M)) = n —rg(M — A\I,)



Diagonalisation.

Soit E un espace vectoriel de dimension finie.

4.1 Définition.

4.1.1 Pour un endomorphisme.

Définition

Soit f un endomorphisme de F,

dire que f est diagonalisable signifie qu’il existe une base & de E telle que Matg(f) est diagonale.

Autrement dit :

f est diagonalisable si, et seulement si, E posséde une base constituée de vecteurs propres de f.

Vocabulaire. ”’Diagonaliser f”‘ signifie trouver une base de E pour laquelle Matg(f) est diagonale.

Remarque : Certains endomorphismes ne sont pas diagonalisables. Exemple :

Exemples. (Voir Feuille Exo_16)

4.1.2 Pour une matrice carrée.
Définition.
Soit M € #,(K), ,
dire que M est diagonalisable signifie que M est semblable & une matrice diagonale.

Remarque : Certaines matrices ne sont pas diagonalisables.

P inversible

. _ -1
A diagonale telles que M = PAP

Vocabulaire. ” ’Diagonaliser M ”‘ signifie trouver deux matrices : {

Exemples. (Voir Feuille Exo_16)

Théoréme.

Soient f un endomorphisme de F et £ une base de F

f est diagonalisable si, et seulement si, Matg(f) est diagonalisable.

Remarques :

e Les matrices diagonales sont diagonalisables.
(En particulier la matrice nulle et la matrice identité de #,,(K) sont diagonalisables).

e Pour A et B sont semblables alors (A est diagonalisable si, et seulement si, B est diagonalisable).
e Vu en exercice : Si M = PAP~! alors la trace[] de M est égale & celle de A

Autrement dit : Si M est diagonalisable alors tr(M) = Z Adim(Ey(M))
Asp(M)

1. On rappelle que la notion de trace n’est pas au programme.



4.2 Condition suffisante.

Théoréme. (Condition suffisante pour qu’un endomorphisme soit diagonalisable).

Soit f € Z(E) et que E est de dimension n,
Si f possede n valeurs propres distinctes alors f est diagonalisable.

et tous les sous-espaces propres sont de dimension 1.

Démonstration

Théoréme. (Condition suffisante pour qu’une matrice carrée soit diagonalisable)

Soit M € #,,(K), Si M possede n valeurs propres distinctes alors M est diagonalisable.

et tous les sous-espaces propres sont de dimension 1.

Démonstration

Attention :

Si M (ou f) n’a pas n valeurs propres distinctes alors on ne peut rien conclure avec ce théoréme.

4.3 Condition nécessaire et suffisante.

Théoréme. (Condition nécessaire et suffisante pour qu’un endomorphisme soit diagonalisable).

Soit f € Z(FE) (et que E est de dimension n),

f est diagonalisable si, et seulement si,
la somme des dimensions des sous-espaces propres de f est égale a n.

Démonstration.

Autrement dit : (Encore une occasion de comprendre la notion d’équivalence)

e Si Z dim (Ex(f)) = n alors [f est diagonalisable|
AESp(f)

e Sinon ’ f n’est pas diagonalisable‘

Théoréme. (Condition nécessaire et suffisante pour qu’une matrice carrée soit diagonalisable).

Soit M € #,(R),

M est diagonalisable si, et seulement si,
la somme des dimensions des sous-espaces propres de M est égale a n.

Démonstration.

Autrement dit :

e Si Z dim (Ex(M)) =n alors |[M est diagonalisable]
AESP(M)

e Sinon ’ f n’est pas diagonalisable‘

Exemple :
1 10 1 00
My={0 2 0 et My=1(0 2 1
0 0 2 0 0 2



4.4 En pratique pour les matrices carrées.

M e #,(K).

On a montré que M est diagonalisable avec l'un des théoremes précédents et on a trouvé une base de chaque
sous-espace propre et en les juxtaposant on a une base de vecteurs propres,

autrement dit on a :

(Uy,Us, ..., Uy,) une base de 4, 1(K) et (A, Ap) €K tels que :
MUy = MUy, MUy = XU, -+, MU, =AU, (*)
On note P la matrice de (Uq,Us, ..., U,) dans la base canonique de ., 1(K) et A = Diag(A1, ..., \n),

d’une part (U, Us, ..., U,) est une base donc P est inversible

et d’autre part on a :

M = PAP™!
O Premiére explication.
Les relations (*) peuvent s’écrire :
M(UL [T | - [U) = (MU AUs | -+ [ AU
ou encore
MP = PA

et comme P est inversible, on obtient

M = PAP~!

® Deuxieéme explication.
On note f: X — MX, % labase canonique de ., 1(K) et % la base (Uy,Us,...,U,)
P est la matrice de changement de base de € & £, M = Matg(f) et A = Matg(f),

la formule de changement de variable donne : A = P~*M P ou encore :

M = PAP~!

En résumé :

’Si P est la matrice d’une base de vecteurs propres de M € ., (R) alors M = PAPfl‘

4.5 Application au calcul de puissance de matrices carrées.

Lorsque M est diagonalisable il est simple de calculer les puissances de M

XM 0 e . 0 Ao e 0
0 X ; 0 M
Si M=P | . .. P~' alors pour tout k€N, M"=P P!
: © A O ; CooAE, 0
0 -ee e 0 An 0 -0 e 0 p

4.6 Application aux systemes différentielles linéaires.

X'(t)=MX(t) <= P 'X'(t)=AP'X(t)
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Matrice symétrique réelle.

Théoreme. (Provisoire)

Soit M une matrice carrée,

Si M est a coefficients réels et M est symétrique alors M est diagonalisable dans ., (R).

Théoreme admis.

Plus précisément pour une matrice carrée M,

T _ . |
Yy { P inversible telles que M = PAP~1,

Si { Wi, j) € RQ’mM_ cR alors il existe deux matrices de ., (R) : A diagonale

En particulier :
O A € #,(R) donc les valeurs propres de M sont réels.
@ P c #,(R) donc M possede une base de vecteurs propres réels.

Exemples.

Les matrices suivantes sont diagonalisables dans ., (R) (en particulier leur spectre est inclus dans R).
1 3 1 2 3 1 2 3
<3 2) 2 0 5 2 0 5 M = (i+j) 1<i<n
3 5 6 3 5 6 IS

Attention
@ ne pas oublier 4 coefficients réels”, voir ’exemple ci-dessous :
b

La matrice (2 _11> est symétrique, mais elle n’est pas diagonalisable.

0 Une matrice de ., (R) peut-étre diagonalisable dans .4, (C) mais pas dans .4, (R).

1
-1 0

en revanche elle diagonalisable dans .#,,(C) car elle a deux valeurs propres i et —i.
. (0 1\ i 0 1 (1 1
plus précisément : <_1 0) =P (0 —i) P~ avec P = (z —i)

® Dans ., (C), une matrice symétrique & coefficients réels possede des vecteurs propres a coefficients complexes,

(1) ()=2()

La matrice de ( 0 > n’est pas diagonalisable dans ., (R) car elle n’a pas de valeur propre réelle,

Nous prolongerons bientot ce théoreme par :

M = PAP~!

P inversible
, telles que p-1_ pT

si{ M =M
A diagonale

V(i, ) € [1,n]%, mi; € R alors il existe deux matrices de ., (R) : {
) ’ (AR

Autrement dit :

Toute matrice carrée symétrique réelle est diagonalisable dans une base orthonormée.
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