Devoir maison pour le jeudi 30 janvier 2025

Ce sujet comporte 3 exercices totalement indépendants.

On suppose dans toutes les questions d'informatique que les modules math et random ont été importés via les instructions from math import * et import random as rd

EXERCICE 1.

On considère les matrices

$$A = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

On note f l'endomorphisme de \mathbb{R}^3 dont A est la matrice relativement à la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 et id l'endomorphisme identité de \mathbb{R}^3 dont la matrice est I.

- 1) a) Déterminer $(A-I)^2$.
 - b) En déduire que A est inversible et écrire A^{-1} comme combinaison linéaire de I et A.
- 2) On pose A = N + I.
 - a) Exprimer pour tout entier naturel n, la matrice A^n comme combinaison linéaire de I et N, puis l'écrire comme combinaison linéaire de I et A.
 - b) Vérifier que l'expression précédente est aussi valable pour n = -1.
- 3) a) Utiliser la première question pour déterminer la seule valeur propre de A.
 - b) En déduire si A est ou n'est pas diagonalisable.
- 4) On pose $u_1 = (f id)(e_1)$ et $u_2 = e_1 + e_3$.
 - a) Montrer que le rang de f id est égal à 1 .
 - b) Justifier que (u_1, u_2) est une base de $\ker(f \mathrm{id})$.
- 5) a) Montrer que (u_1, u_2, e_1) est une base de \mathbb{R}^3 .
 - b) Déterminer la matrice T de f dans cette même base.
- 6) Soit la matrice $P = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. Justifier l'inversibilité de P puis écrire la relation existant entre les matrices A, T, P et P^{-1}
- 7) On note $(E_{1,1}, E_{1,2}, E_{1,3}, E_{2,1}, E_{2,2}, E_{2,3}, E_{3,1}, E_{3,2}, E_{3,3})$ la base canonique de $\mathcal{M}_3(\mathbb{R})$ et on rappelle que, pour tout (i,j) de $[1,3]^2$, la matrice $E_{i,j}$ n'a que des coefficients nuls sauf celui situé à l'intersection de la i-ème ligne et de la j-ème colonne qui vaut 1.
 - a) Montrer que l'ensemble E des matrices M qui commutent avec T, c'est-à-dire des matrices vérifiant l'égalité MT = TM, est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par la famille $(E_{1,1} + E_{3,3}, E_{1,2}, E_{1,3}, E_{2,2}, E_{2,3})$. Vérifier que la dimension de E est égale à 5.
 - b) Soit N une matrice quelconque de $\mathcal{M}_3(\mathbb{R})$. Établir l'équivalence :

$$NA = AN \Leftrightarrow (P^{-1}NP) T = T(P^{-1}NP).$$

c) En déduire que l'ensemble F des matrices qui commutent avec A est le sous-espace vectoriel de $\mathcal{M}_3(\mathbf{R})$ engendré par la famille $(P(E_{1,1} + E_{3,3}) P^{-1}, PE_{1,2}P^{-1}, PE_{1,3}P^{-1}, PE_{2,2}P^{-1}, PE_{2,3}P^{-1})$

EXERCICE 2.

Pour tout entier naturel n, on pose

$$u_n = \int_0^1 (1 - t^2)^n dt$$

On a donc, en particulier, $u_0 = 1$.

- 1) Déterminer u_1 et u_2 .
- 2) a) Montrer que la suite (u_n) est décroissante.
 - b) En déduire que la suite (u_n) est convergente.
- 3) On se propose dans cette question de déterminer la limite de la suite (u_n) .
 - a) Rappeler la valeur de l'intégrale $\int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{t^2}{2\sigma^2}} dt.$
 - b) En déduire la valeur de l'intégrale $\int_{-\infty}^{+\infty} e^{-nt^2} dt$ puis celle de $\int_{0}^{+\infty} e^{-nt^2} dt$.
 - c) Montrer que, pour tout réel t, on a : $e^{-t^2} \ge 1 t^2$.
 - d) En déduire que : $0 \le u_n \le \frac{1}{2} \sqrt{\frac{\pi}{n}}$ puis donner la limite de la suite (u_n) .
 - e) Calculer $\int_0^1 (1-t)^n dt$ puis montrer que $u_n \ge \frac{1}{n+1}$.

Que peut-on en déduire en ce qui concerne la série de terme général u_n ?

4) a) Établir, grâce à une intégration par parties, que, pour tout entier naturel n, on a :

$$u_{n+1} = (2n+2)(u_n - u_{n+1})$$

Puis une relation de u_{n+1} en fonction de u_n .

b) En déduire l'égalité :

$$\forall n \in \mathbb{N}, \quad u_n = \frac{4^n (n!)^2}{(2n+1)!}$$

c) On admet l'équivalent $n! \underset{n:+\infty}{\sim} \sqrt{2\pi n} \ n^n e^{-n}$.

En écrivant
$$u_n = \frac{4^n(n!)^2}{(2n+1)(2n)!}$$
, montrer que :

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{n}}$$

- 5) Informatique.
 - a) Ecrire une fonction récursive en Python prenant un entier n comme argument et qui renvoie la valeur de u_n en utilisant le résultat de la question 4) a)
 - b) Ecrire une fonction Python non récursive prenant un entier n comme argument et qui renvoie la valeur de u_n en utilisant les résultats de la question 4) a)
 - c) Ecrire une fonction Python prenant un entier n comme argument et qui renvoie la valeur de u_n en utilisant le résultat de la question 4) c)

2

d) Comparer les deux fonctions précédentes.

EXERCICE 3.

Notations et rappels.

On utilise les notations habituelles $\mathbb{N}, \mathbb{Z}, \mathbb{R}$, mais aussi $\mathbb{N}^*, \mathbb{Z}^*, \mathbb{R}_+, \mathbb{R}_+^*$. Par exemple \mathbb{Z}^* désigne l'ensemble des entiers relatifs non nuls, et \mathbb{R}_+ l'ensemble des réels positifs ou nuls. Pour $m \leq n$ entiers naturels, on note $[m, n] = \{m, \dots, n\}$ l'ensemble des entiers naturels compris dans l'intervalle [m, n].

Pour $n \geq 1$, on note $M_n(\mathbb{R})$ l'ensemble des matrices M carrées de taille n à coefficients réels. On identifie un vecteur de taille n avec la matrice de taille $n \times 1$. On dit qu'une suite $(M^{(k)})_{k \geq 1}$ de matrices dans $M_n(\mathbb{R})$ converge vers une matrice $M \in M_n(\mathbb{R})$ si pour tout (i,j) dans $[\![1,n]\!]^2$, la suite des coefficients $(M^{(k)}_{i,j})_{k \geq 1}$ converge vers le coefficient $M_{i,j}$. On rappelle par ailleurs qu'un vecteur non nul $X \in \mathbb{R}^n$ est un vecteur propre de M si il existe un réel λ tel que $MX = \lambda X$. Ce réel est alors appelé valeur propre associée au vecteur propre X.

Dans cette partie, on se fixe n un entier supérieur ou égal à 2, et a,b et c des réels strictement positifs. On s'intéresse à la matrice $M=(M_{i,j})_{1\leq i,j\leq n}$ de $M_n(\mathbb{R})$ définie par

$$M_{i,j} = \begin{cases} a & \text{si } j = i \\ b & \text{si } j = i - 1 \\ c & \text{si } j = i + 1 \\ 0 & \text{si } j \notin \{i - 1, i, i + 1\} \end{cases}$$

- 1) Dans cette question seulement, on suppose n=2. On a alors $M=\begin{pmatrix} a & c \\ b & a \end{pmatrix}$. Déterminer les vecteurs propres et les valeurs propres de M.
- 2) Pour $l \in [1, n]$ et $r \in \mathbb{R}_+^*$, on note $X^{(l,r)} = \left(X_i^{(l,r)}\right)_{1 \le i \le n}$ le vecteur défini par

$$X_i^{(l,r)} = r^i \sin\left(\frac{il\pi}{1+n}\right)$$

et $Y^{(l,r)} = \left(Y_i^{(l,r)}\right)_{1 \leq i \leq n}$ le vecteur défini par

$$Y_i^{(l,r)} = r^i \cos\left(\frac{il\pi}{1+n}\right)$$

Pour $l \in [1, n]$ et $r \in \mathbb{R}_+^*$, montrer que l'on a :

$$MX^{(l,r)} = \left(a + \left(cr + \frac{b}{r}\right)\cos\left(\frac{l\pi}{1+n}\right)\right)X^{(l,r)} + \left(cr - \frac{b}{r}\right)\sin\left(\frac{l\pi}{1+n}\right)Y^{(l,r)}.$$

En déduire que pour $l \in [1, n]$, le vecteur $X^{(l, \sqrt{b/c})}$ est un vecteur propre, et déterminer la valeur propre associée. On notera $X^{(l)} = X^{(l, \sqrt{b/c})}$ ce vecteur propre, et $\lambda^{(l)}$ la valeur propre associée.

- 3) Soient $m \ge 1$ et $Z^{(1)}, \ldots, Z^{(m)}$ des vecteurs propres d'une matrice $A \in M_n(\mathbb{R})$, associés aux valeurs propres $\lambda_1, \ldots, \lambda_m$ supposées distinctes et ordonnées par ordre décroissant : $\lambda_1 > \ldots > \lambda_m$.
 - a) Sous l'hypothèse supplémentaire $\lambda_m > 0$, montrer que la famille $(Z^{(1)}, \ldots, Z^{(m)})$ est libre. On pourra considérer, pour Z combinaison linéaire de ces vecteurs, le comportement de $A^k Z$ lorsque k tend vers l'infini.
 - b) Montrer que le résultat reste vrai sans l'hypothèse $\lambda_m > 0$.
 - c) En déduire que les vecteurs $X^{(1)}, \ldots, X^{(n)}$ forment une base de \mathbb{R}^n .
- 4) Pour $l \in [\![1,n]\!]$, on note $E^{(l)} = \left(E_i^{(l)}\right)_{1 \leq i \leq n}$ le vecteur défini par

$$E_i^{(l)} = \begin{cases} 1 & \text{si } i = l \\ 0 & \text{sinon} \end{cases}$$

de sorte que $E^{(1)},\ldots,E^{(n)}$ est la base canonique de \mathbb{R}^n . Pour $l\in [\![1,n]\!]$, on note $(\alpha_{i,l})_{1\leq i\leq n}$ les coefficients de $E^{(l)}$ dans la base $X^{(1)},\ldots,X^{(n)}$. Montrer que la suite de matrices $\left(\frac{1}{\left(\lambda^{(1)}\right)^k}M^k\right)_{k\geq 1}$ converge vers la matrice $N=(N_{i,j})_{1\leq i,j\leq n}$ définie par

$$N_{i,j} = \alpha_{1,j} \left(\frac{b}{c}\right)^{i/2} \sin\left(\frac{i\pi}{1+n}\right)$$

5) Montrer que les coefficients $N_{i,j}$ sont tous strictement positifs