Fiche de révision – Suites

1. Suites usuelles

1.1. Suites arithmétiques

Définition : $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison $r\in\mathbb{R}$ signifie

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r.$$

Formule explicite:

$$\forall n \in \mathbb{N}, \quad u_n = u_0 + nr.$$

Somme partielle:

$$\forall p, n \in \mathbb{N}, \ n \ge p, \quad \sum_{k=p}^{n} u_k = (n-p+1) \frac{u_p + u_n}{2}.$$

1.2. Suites géométriques

Définition : $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison $q\in\mathbb{R}$ signifie

$$\forall n \in \mathbb{N}, \quad u_{n+1} = qu_n.$$

Formule explicite:

$$\forall n \in \mathbb{N}, \quad u_n = u_0 q^n.$$

Somme $(q \neq 1)$:

$$\forall p, n \in \mathbb{N}, \ n \ge p, \quad \sum_{k=n}^{n} u_k = u_p \, \frac{1 - q^{n-p+1}}{1 - q}.$$

1.3. Suites arithmético-géométriques

Définition : (u_n) est telle que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b, \quad a \neq 1.$$

Point fixe $\ell = \frac{b}{1-a}$, puis

$$\forall n \in \mathbb{N}, \quad u_n = (u_0 - \ell)a^n + \ell.$$

1.4. Récurrence linéaire d'ordre 2

Définition : (u_n) est telle que

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n.$$

Équation caractéristique : $x^2 = ax + b$.

- Racines distinctes $q_1, q_2 : \forall n, \ u_n = \alpha q_1^n + \beta q_2^n$.
 Racine double $q_0 : \forall n, \ u_n = (\alpha + \beta n)q_0^n$.
 Racines complexes $re^{\pm i\theta}$:

$$\forall n, \ u_n = r^n(\alpha \cos(n\theta) + \beta \sin(n\theta))$$

2. Suites réelles

2.1. Bornées

Définition : $(u_n)_{n\in\mathbb{N}}$ est

- majorée signifie $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \leq M$. minorée signifie $\exists m \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_n \geq m$.
- bornée signifie $\exists m, M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ m \leq u_n \leq M$.

2.2. Monotonie

Définition : (u_n) est

- croissante signifie $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$.
- décroissante signifie $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.

2.3. Théorème de limite monotone

Si (u_n) est monotone alors (u_n) admet une limite.

Si (u_n) est croissante et majorée, alors (u_n) converge.

Si (u_n) est décroissante et minorée, alors (u_n) converge.

2.4. Suites adjacentes

Définition: Deux suites sont adjacentes signifie qu'une est croissante, l'autre décroissante et leur différence tend vers 0.

2025-2026

Théorème : Si deux suites sont adjacentes alors elles convergent et vers le même réel.

3. Limites de suites

3.1. Définition

 $(u_n) \to \ell$ signifie:

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geq N \Rightarrow |u_n - \ell| \leq \varepsilon.$$

3.2. Limites usuelles

$$\lim_{n\to\infty}\frac{1}{n}=0,\quad \lim_{n\to\infty}\sqrt[n]{a}=1\;(a>0),\quad \lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e.$$

3.3. Suites arithmétiques et géométriques

- Si r=0, (u_n) converge.
- Si r > 0, $(u_n) \to +\infty$.
- Si r < 0, $(u_n) \to -\infty$.
- Si $|q| < 1, u_n \to 0.$
- Si q = 1, $u_n = u_0$.
- Si |q| > 1, alors $|u_n| \to +\infty$.

3.4. Passage à la limite

Si $\forall n, u_n \leq v_n \text{ et } u_n \to \ell, v_n \to \ell', \text{ alors } \ell \leq \ell'.$

Si $\forall n, u_n = v_n \text{ et } u_n \to \ell, v_n \to \ell', \text{ alors } \ell = \ell'.$

3.5. Théorèmes de comparaison

Si $\forall n, u_n \leq v_n \leq w_n$ et $u_n \to \ell, w_n \to \ell$, alors $v_n \to \ell$.

Si $\forall n, u_n \leq v_n$ et $u_n \to +\infty$, alors $v_n \to +\infty$.

3.6. Croissances comparées

$$\lim_{n \to \infty} \frac{n^{\alpha}}{q^n} = 0 \quad (q > 1), \qquad \lim_{n \to \infty} \frac{q^n}{n!} = 0.$$

3.7. Suites équivalentes

Définition : $(u_n) \sim (v_n)$ signifie $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$.

Attention : on n'écrit jamais $u_n \sim 0$.

4. Suites définies par $u_{n+1} = f(u_n)$

4.1. Intervalle stable

 $I \subset \mathbb{R}$ est stable par f signifie $\forall x \in I$, $f(x) \in I$.

Si $u_0 \in I$, alors $\forall n \in \mathbb{N}, u_n \in I$.

4.2. Limites possibles

Si (u_n) converge vers ℓ et f est continue en ℓ , alors $f(\ell) = \ell$. Les limites possibles sont donc les points fixes de f.

- Si $\forall x \in I$, $f(x) x \ge 0$, alors (u_n) est croissante.
- Si $\forall x \in I, f(x) x \leq 0, \text{ alors } (u_n) \text{ est décroissante.}$
- Si f est croissante sur I, alors (u_n) est monotone (croissante si $u_0 \le u_1$, décroissante si $u_0 \ge u_1$).
- Si f est décroissante sur I, alors (u_{2n}) et (u_{2n+1}) sont monotones, de sens opposés.

4.4. Représentations graphiques

Deux représentations usuelles :

- 1. Diagramme en escalier/escargot:
 - segments reliant (u_n, u_{n+1}) à (u_{n+1}, u_{n+1}) .
- 2. Nuage de points : (n, u_n) .