Fiche de révision : Intégrales de fonctions continues sur un segment

Définition

Pour $f:[a,b] \to \mathbb{R}$ continue, l'intégrale

$$\int_{a}^{b} f(x) \, dx$$

est l'aire algébrique "sous" la courbe $C_f: y = f(x)$.

Sommes de Riemann

Définition.

$$G_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k \frac{b-a}{n}\right)$$

Théorème.

Si f est continue sur [a, b]

 $\int_{a}^{b} f(x) dx$ **alors** la suite (G_n) converge vers

Méthode des rectangles

Propriétés

Générales à toutes les intégrales :

- Linéarité : $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$. Changement de bornes : $\int_a^b f = -\int_b^a f$. Relation de Chasles : $\int_a^b f = \int_a^c f + \int_c^b f$.

avec $a \le b$

- Monotonie : Si $f \leq g$ sur [a, b] alors $\int_a^b f \leq \int_a^b g$. Positivité : Si $f \geq 0$ sur [a, b] alors $\int_a^b f \geq 0$.

Spécifique au fonction continue.

 Stricte positivité : si $a < b, f \ge 0$ et $f \ne 0$ sur [a, b] alors $\int_a^b f > 0$.

Théorème fondamental

Théorème. (pour $a \in I$)

 $\mathbf{si} \ f$ est continue sur I

alors $x \longmapsto \int_{-\infty}^{x} f(t) dt$ est une primitive de f sur I.

Conséquence.

Si
$$F'=f$$
, alors $\int_a^b f(x) dx = F(b) - F(a)$ (noté $[F(x)]_a^b$).

Formules de calcul

— Changement de variable : si $u = \varphi(x), \varphi \in C^1([a, b])$:

$$\int_{a}^{b} f(\varphi(x))\varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(u) du.$$

— Intégration par parties : Pour u et v dans $C^1([a,b])$

$$\int_a^b u \, v' = \left[uv \right]_a^b - \int_a^b u' \, v.$$

Intégrales et valeur absolue

— Inégalité triangulaire. (avec a < b)

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

— Majoration

$$\left| \int_{a}^{b} f(t) dt \right| \le \sup_{t \in [a,b]} |f(t)| |b - a|$$

Valeur moyenne

Pour f continue sur [a, b], il existe $c \in [a, b]$ tel que :

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Parité et périodicité

Si f est **paire** et si $[-a, a] \subset D$ alors

$$\int_{-a}^{a} f(t) \, dt = 2 \int_{0}^{a} f(t) \, dt$$

Si f est **impaire** et si $[-a, a] \subset D$ alors

$$\int_{-a}^{a} f(t) \, dt = 0$$

Si f est **périodique** de période T alors pour tout a,

$$\int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt = \int_{a-\frac{T}{2}}^{a+\frac{T}{2}} f(t) dt$$

Exemples

$$\int_{a}^{b} k \, dx = k(b - a)$$

$$\int_{a}^{b} x^{n} \, dx = \frac{b^{n+1} - a^{n+1}}{n+1} \qquad (n \neq 1)$$

$$\int_{a}^{b} \frac{1}{x} \, dx = \ln\left(\frac{b}{a}\right)$$

$$\int_{a}^{b} e^{x} \, dx = e^{b} - e^{a}$$