Feuille-Cours 1 : Introduction au cours sur les séries numériques.

Nota	tion:
dente	questions ne sont pas indépendantes, vous devez souvent utiliser les résultats des questions préces pour répondre. Ce sont des applications ou des démonstrations du cours, tout est à connaître arque aux $5/2$: on répondra aux questions sans chercher à se souvenir du cours sur les séries $\frac{1}{2}$
Ex 1:	Des exemples pour comprendre cette définition.
	Quelle est la nature des séries suivantes? (Sont-elles convergentes ou divergentes?)
	1) $\sum_{n\geqslant 0} (-2)^{-n}$ 2) $\sum_{n\geqslant 0} n$ 3) $\sum_{n\geqslant 1} \frac{1}{2^n}$ 4) $\sum_{n\geqslant 1} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ 5) $\sum_{n\geqslant 1} (-0.1)^n$ 6) $\sum_{n\geqslant 1} 2^n$
Ex 2:	(La nature ne dépend pas du premier indice)
	Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, et n_1 , n_2 deux entiers naturels, Montrer que : $\sum u_n$ converge si, et seulement si, $\sum u_n$ converge.
	$n{\geqslant}n_1$
x 3:	(Très mal maitrisé) (Un condition nécessaire pour être convergente)
	Soit (u_n) une suite de nombres réels telle que $\sum_{n\geqslant 0}u_n$ converge, montrer que la suite (u_n) converge vers 0
Ex 4:	(Ultra-classique) (Nature de la série harmonique)
	Déterminer la nature de la série $\sum_{n\geq 1} \frac{1}{n}$. (Indication:
Ex 5:	(Ultra-classique) (Nature de la série de Riemann $\sum \frac{1}{n^2}$)
	Déterminer la nature de la série $\sum_{n\geqslant 1}\frac{1}{n^2}$. (Indication:
D	éfinition · (Samme d'une série convergente)
D	éfinition : (Somme d'une série convergente.)

 ${\bf Notation:}$

Calculer, si elles existent, la somme des séries suivantes.

1)
$$\sum_{r>0} (-2)^{-r}$$

1)
$$\sum_{n \ge 0} (-2)^{-n}$$
 2) $\sum_{n \ge 0} \left(\frac{1}{n+3} - \frac{1}{n+1} \right)$ 3) $\sum_{n \ge 1} \frac{1}{2^n}$ 4) $\sum_{n \ge 1} \left(\frac{1}{n} - \frac{1}{n+1} \right)$

$$3)\sum_{n\geqslant 1}\frac{1}{2^n}$$

$$4) \sum_{n\geqslant 1} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

Ex 7: (Ultra-classique) (Somme des séries géométriques)

- 1) Pour $x \in \mathbb{R}$, déterminer une condition nécessaire et suffisante sur x pour que la série $\sum_{n=0}^{\infty} x^n$ converge.
- 2) Déterminer lorsqu'elle converge la somme $\sum_{n=0}^{+\infty} x^n$.
- 3) (Application de ce qu'on vient de démontre

Calculer les sommes suivantes :

$$S_1 = \sum_{n=0}^{+\infty} (0,5)^n$$

$$S_2 = \sum^{+\infty} \frac{1}{3^n}$$

$$S_1 = \sum_{n=0}^{+\infty} (0.5)^n$$
 $S_2 = \sum_{n=1}^{+\infty} \frac{1}{3^n}$ $S_3 = \sum_{n=1}^{+\infty} (-0.1)^n$

Ex 8: (Classique) (Somme des séries géométriques dérivées d'ordre 1 et 2)

1) Soit $x \in \mathbb{R}$ tel que $x \notin]-1;1[$, quelle est la nature des séries $\sum_{n\geq 1} nx^{n-1}$ et $\sum_{n\geq 2} n(n-1)x^{n-2}$?

Dans la suite, x désigne un réel de]-1;1[,

- 2) Quelle est la limite de la suite : (nx^n) ?
- 3) En notant $s_n = \sum_{k=1}^n kx^{k-1}$, montrer que pour $n \ge 1$, $(1-x)s_n = \sum_{k=0}^{n-1} x^k nx^n$
- 4) En déduire que la série $\sum_{n\geqslant 1} nx^{n-1}$ converge et préciser sa somme.
- 5) Faire la même étude sur la série $\sum_{n=0}^{\infty} n(n-1)x^{n-2}$
- 6) Pourquoi parle-t-on de séries géométrique dérivées?
- 7) Application:

Calculer les sommes suivantes :

$$S_1 = \sum_{n=1}^{+\infty} \frac{n}{3^{n-1}}$$

$$S_2 = \sum_{n=0}^{+\infty} \frac{(-1)^n n^n}{2^n}$$

$$S_1 = \sum_{n=1}^{+\infty} \frac{n}{3^{n-1}} \qquad S_2 = \sum_{n=0}^{+\infty} \frac{(-1)^n n}{2^n} \qquad S_3 = \sum_{n=1}^{+\infty} n(n-1) \frac{1}{4^n} \qquad S_4 = \sum_{n=0}^{+\infty} n^2 3^{-n}$$

$$S_4 = \sum_{n=0}^{+\infty} n^2 3^{-n}$$

Ex 9: (Plus difficile) (Somme des séries exponentielles)

1) Montrer, par récurrence sur n, que pour tout $(x,n) \in \mathbb{R} \times \mathbb{N}$,

$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \int_0^x \frac{(x-t)^n}{n!} e^t dt$$

2) Montrer que pour x fixé, la suite $\left(\int_0^x \frac{(x-t)^n}{n!} e^t dt\right)_{x\in\mathbb{N}}$ converge vers 0.

Indication: on pourra commencer par traiter le cas x > 0.

- 3) En déduire que la série $\sum_{n\geqslant 0}\frac{x^n}{n!}$ est convergente et préciser sa somme.
- 4) Application:

Calculer les sommes suivantes :

$$S_1 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!}$$

$$S_2 = \sum_{1}^{+\infty} \frac{2}{n!}$$

$$S_3 = \sum_{n=0}^{+\infty} \frac{3^n}{n!}$$

$$S_1 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \qquad S_2 = \sum_{n=1}^{+\infty} \frac{2}{n!} \qquad S_3 = \sum_{n=0}^{+\infty} \frac{3^n}{n!} \qquad S_4 = \sum_{n=0}^{+\infty} \frac{1}{(2n)!}$$