Feuille-Cours-2 : Polynômes.

Définition	$(Polyn\^ome)$	
------------	----------------	--

Ex 1 : (Vocabulaire) Donner le degré, le terme constant et le monôme dominant des polynômes suivants :

 $P_1 = 2 - X + 3X^3$ $P_2 = (X+1)^6 - X^6$ $P_3 = ((1+i)X^2 + X - 2i)^3$ $P_4 = 2X + 8X^3 + 3X^2$

Ex 2 : (Identification). Déterminer les nombres complexes a, b et c tels que :

$$X^{3} + X^{2} - 4X + 6 = (X - (1+i))(aX^{2} + bX + c)$$

Ex 3 : Opérations. On note : P = X - 3, Q = 2 et $R = X^2 + X + 5$

Donner une forme développée des polynômes suivants

$$P(X) - 2R(X)$$
 P^2 $P(X)Q(X)$ $P(X)R(X)$ $(X+1)P(X)$ $P(X+1)$ $P \times (X+1)$ $Q(P)$ $R(P(X))$ $R(P(X))$

Définition (degré d'un polynôme)

Théorème (degré et opérations)

Ex 4 : Donner le degré des polynômes suivant :

 $P_1 = 2 + X + X^4$ $P_2 = (X+2)(5X^2 - 3)$ $P_3 = (4X+2)^3(1+X)^2$ $P_4 = (X+2)^2 - (X^2 - 3)$

Théorème (Intégrité)

Ex 5: 1) Démontrer ce théorème. (Indication : il suffit de montrer que si P et Q sont non nuls alors PQ est non nul)

- 2) a. Déterminer les polynômes P vérifiant : $P 2XP = 2X^2 + X 1$.
 - b. Même question avec l'équation : $P^2 + 2XP = 1 + 2X$. (Même idée que la forme canonique)
- 3) Donner deux suites non nulles (u_n) et (v_n) (différentes de la suite nulle) telles que le produit $(u_n)(v_n)$ est la suite nulle.
- 4) Donner deux matrices non nulles A et B qui sont telles que le produit AB est nulle.

]	Théorème (Racine et factorisation)
1	Démontrer le théorème. avec les indications suivantes : • Commencer par justifier que pour tout $k \in \mathbb{N}$, il existe $Q_k \in \mathbb{C}[X]$ tel que $X^k - \alpha^k = (X - \alpha^k)$
	2 Ecrire $P = \sum_{k=0}^{n} a_k X^k$ et calculer $P(X) - P(\alpha)$.
	Enoncer la généralisation de ce théorème avec m racines distinctes.
1	1) Soit P est un polynome de degré $n \in \mathbb{N}^*$ vérifiant : $\forall k \in [1; n], P(k) = 0$ et $P(0) = 1$. Déterminer une forme factorisée de P .
	2) Montrer qu'il existe un et un seul polynôme P vérifiant : $\forall t \in \mathbb{R}$, $\cos(3t) = P(\cos(t))$. (on traitera séparément l'existence et l'unicité)
	Définition (Racines multiples. Multiplicité.)
	Déterminer l'ordre de multiplicité de chaque racine de $P = 2(X+3)^2(2X-1)(2X+6)$ 2) Factoriser $P = X^4 - 4X^3 + 16X - 16$ sachant que 2 est une racine multiple.
	1) Démontrer ce théorème.
	P) Factoriser dans $\mathbb{C}[X]$ le polynôme $P = X^3 - 3X^2 + X - 3$ en remarquant que $P(i) = 0$ B) On note $P = X^4 - 7X^3 + 18X^2 - 22X + 12$.
	Trouver toutes les racines de P sachant que $1+i$ en est une.

Ex 10 : 1) On note $P = X^4 + 1$, déterminer les racines réelles de P, déterminer les racines de P. 2) Factoriser dans $\mathbb{C}[X]$ le polynome $X^4 - 2X^2 + 1$.