Correction feuille Blitz_1 : Séries.

Cocher les cases : (c'est un exercice de rapidité (10 minutes) vous pouvez faire un brouillon dans la marge) N'hésitez pas à répondre "je ne sais pas".

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, on note pour tout n, $S_n = \sum_{k=0}^n u_k$.

Associée chaque notation avec leur nom :

\sum_{i}	u_n	0

 S_n

 (S_n)

- somme partielle d'ordre n
- somme de la série de terme général (u_n)
- suite des sommes partielles
- terme général d'ordre n
- série de terme général u_n
- Dans cette question toutes les sommes existent. Les égalités suivantes sont elles vraies?

$$\sum_{k=0}^{+\infty} (0.5)^k = 2$$

Oui \blacksquare Non \square je ne sais pas \square

$$\sum_{k=1}^{+\infty} \frac{1}{k!} = e - 1$$

Oui \blacksquare Non \square je ne sais pas \square

$$\sum_{k=1}^{+\infty} \left(\frac{1}{k+2} - \frac{1}{k+1}\right) = \frac{1}{3} \quad \text{ Oui } \quad \text{Non } \blacksquare \quad \text{je ne sais pas } \square$$

$$\sum_{k=1}^{+\infty}\frac{1}{k^2}=\sum_{k=0}^{+\infty}\frac{1}{(k+1)^2} \qquad \qquad \text{Oui} \ \blacksquare \quad \text{Non} \ \Box \quad \text{je ne sais pas} \ \Box$$

3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, on note pour tout $n, S_n = \sum_{k=0}^n u_k$. on suppose $\lim_{n \to +\infty} S_n = \ell$ et $\forall n \in \mathbb{N}, u_n \geqslant 0$.

Les affirmations suivantes sont-elles vraies et bien formulées?

$$\sum_{k=0}^{n} u_k = \ell$$

 $\sum_{k=0}^{n} u_k = \ell$ Oui \square Non \blacksquare je ne sais pas \square

 (S_n) converge vers ℓ

Oui \blacksquare Non \square je ne sais pas \square

$$\sum_{k=0}^{n} u_k \underset{n \to +\infty}{\longrightarrow} \ell$$

Oui \blacksquare Non \square je ne sais pas \square

$$\sum_{n=0}^{+\infty}u_n$$
 converge Oui \square Non \blacksquare je ne sais pas \square

$$\sum_{n\geqslant 0}u_n \text{ existe et vaut } \ell \qquad \qquad \text{Oui } \square \quad \text{Non } \blacksquare \quad \text{je ne sais pas } \square$$

$$\sum_{n=0}^{+\infty} u_n \xrightarrow[n \to +\infty]{} \ell$$

Oui \square Non \blacksquare je ne sais pas \square

4.	Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, on note pour tout	$n, S_n = \sum_{k=0}^n u_k.$	
	On suppose que la série $\sum u_n$ diverge.	K-U	
	Peut-on en déduire les affirmations suivantes :		
	(S_n) diverge vers $+\infty$ Oui	\square Non \blacksquare je ne sais pas \square	
	(u_n) ne tend pas vers 0 Oui	\square Non \blacksquare je ne sais pas \square	
	(S_n) n'a pas de limite Oui	\square Non \blacksquare je ne sais pas \square	
	$\sum_{n=0}^{+\infty} u_n \text{ n'existe pas} $ Oui	$lacksquare$ Non \Box je ne sais pas \Box	
5.	5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, on note pour tout n , $S_n = \sum_{k=0}^n u_k$.		
	On suppose que (u_n) est à valeurs positives.		
	Peut-on en déduire les affirmations suivantes :		
	(S_n) est croissante Oui \blacksquare	Non \square je ne sais pas \square	
	$\sum u_n$ converge Oui \square	Non \blacksquare je ne sais pas \square	
	(S_n) a une limite Oui \blacksquare	Non \square je ne sais pas \square	
	$\sum_{n=0}^{+\infty} u_n \text{ existe} \qquad \qquad \text{Oui } \square$	Non \blacksquare je ne sais pas \square	
6.	Les affirmations suivantes sont-elles vraies :		
	$\overrightarrow{n\geqslant}0$	Ion \blacksquare je ne sais pas \square	
	$n \ge 0$	Ion $□$ je ne sais pas $□$	
	$\sum_{n\geqslant 2} \frac{1}{n\ln(n)} \text{ converge} \text{Oui } \square \text{N}$	on ■ je ne sais pas ■	
	$\sum_{n\geqslant 1} \frac{1}{n3^n} \text{ diverge} \qquad \text{Oui } \square \text{N}$	Ion ■ je ne sais pas \square	
	$\sum_{n\geqslant 1} \frac{1}{n\sqrt{n}} \text{ converge } \qquad \text{Oui } \blacksquare \text{N}$		
	$\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} = \ln(2) \text{Oui} \blacksquare N$	on □ je ne sais pas $□$	
7.	. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels, on note pour tout	$n, S_n = \sum_{k=0}^n u_k.$	
Peut-on affirmer les implications suivantes :			
	Si (S_n) est croissante alors $\forall n \in \mathbb{N}, \ u_n \geqslant 0$	Oui \square Non \blacksquare je ne sais pas \square	
	Si (u_n) converge vers 0 alors $\sum u_n$ converge	Oui \square Non \blacksquare je ne sais pas \square	
	Si (S_n) est majorée alors $\sum u_n$ converge Oui \square Non \blacksquare je ne sais pas \square		
	Si (u_n) converge vers $\ell \neq 0$ alors $\sum u_n$ diverge	Oui \blacksquare Non \square je ne sais pas \square	