Feuille Act_6: Fonctions usuelles. Continuité, dérivabilité.

Ex 1: Déterminer sans calculatrice la valeur de : $\lfloor \log(125635) \rfloor$

Ex 2 : Etudier la parité des fonctions : $f: \mathbb{R} \to \mathbb{R}$ $g:]-1; 1[\to \mathbb{R}$ $x \mapsto \frac{e^x - 1}{e^x + 1}$ $x \mapsto \ln\left(\frac{1 - x}{1 + x}\right)$

Ex 3: Dans les questions suivantes les réponses pourront s'appuyer sur des arguments graphiques.

1) Résoudre les équations et inéquations suivantes : (E) : $\lfloor x \rfloor = x - \frac{1}{2}$ (I) : $|x| \leqslant x^4$

2) Résoudre sur $\mathbb R$ les équations suivantes :

 $(E_1): e^x + x - 1 = 0$ $(E_2): \ln(x) = x - 1$ $(E_3): \sqrt{x+2} + x + 1 = 0$

3) Résoudre sur \mathbb{R} les inéquations suivantes : (I_1) : $\frac{1}{x} < x^7$ (I_2) : $|x^2 - 1| \le x$

Ex 4: Résoudre les équations et inéquations suivantes :

1) (E_1) : $x^x = x^2$ sur \mathbb{R}_+^* . (E_2) : $e^{3x} - 3e^{2x} + 2e^x \ge 0$ sur \mathbb{R} .

2) $\exp\left(\frac{x+3}{x-1}\right) < 2$ sur \mathbb{R} , $4^x - 2^x - 2 \leqslant 0$ sur \mathbb{R} .

3) $|\log(x) - 1| = 2$ sur \mathbb{R} , $x^{1/3} - 5x^{1/6} + 6 = 0$ sur \mathbb{R}_+^* .

4) $(\ln(x))^2 - \ln(x^2) - 3 = 0$ sur \mathbb{R} , (*) $x^4 = 4^x$ sur \mathbb{R} .

Ex 5: Donner l'allure des courbes:

 $C_1: y = |x-2|$ $C_2: y = |2x+2|$

En déduire les solutions de l'équation : |x-2| = |2x+2|.

Ex 6: Donner l'allure de la courbe représentative de la fonction $f: x \longmapsto |x-2| + |2x| - 2|x+1|$

En déduire les solutions de l'équation : |x-2|+|2x|-2|x+1|=-3x+1

Ex 7: Donner l'allure des courbes représentatives des fonctions suivantes : (sans faire d'étude de fonction)

1) $f_1: x \longmapsto 1-|x|$ $f_2: x \longmapsto |x+1|+3$ $f_3: x \longmapsto 2|x-3|$ et $f_4: x \longmapsto ||x|-1|$.

2) $f_1: x \longmapsto 1+x^2$ $f_2: x \longmapsto 2-x^2$ $f_3: x \longmapsto (x+1)^2-2$ et $f_4: x \longmapsto \frac{1}{2}(x+1)^2$.

3) $f_1: x \longmapsto \sqrt{x+1}$ $f_2: x \longmapsto \sqrt{2-x}$ $f_3: x \longmapsto 2-\sqrt{x}$ et $f_4: x \longmapsto \sqrt{2x+1}$.

4) (*) Pour $\varphi \in]-\pi;\pi], A \in \mathbb{R}_+^*$ et $\omega \in \mathbb{R}_+^*$, $f: t \longmapsto A\cos(\omega t - \varphi)$

Ex 8: Illustrer graphiquement les propositions suivantes.

(Pas sur le cercle trigonométrique mais avec des représentations graphiques de fonction)

1) $\forall x \in \mathbb{R}, |x+1| = |x| + 1$

 $2) \ \exists ! x \in [0; \pi], \quad \cos(x) = \sin(x).$

3) $\forall x \in \mathbb{R}, \quad x+1 \leqslant e^x$

4) $\forall x > -1$, $\ln(x+1) \leqslant x$

5) $\forall x \in \left[0; \frac{\pi}{2}\right], \quad \frac{2}{\pi} x \leqslant \sin(x) \leqslant x$

Ex 9: Tracer l'allure des courbes suivantes:

 $C_1: y = \cos(x) + \sin(x)$ $C_2: y = x - |x|$

Ex 10: Justifier que les fonctions suivantes sont continues sur leur ensemble de définition.

- ① La fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \sqrt{|x|+1}$
- ② La fonction f définie sur \mathbb{R} par : f(0) = 1 et $\forall x \in \mathbb{R}^*$, $f(x) = \frac{\sin(x)}{x}$
- ③ La fonction f définie sur $[-1; +\infty[$ par :

$$f(0) = \frac{1}{2}$$
 et $\forall x \in [-1; 0[\cup] 0; +\infty[, f(x) = \frac{\sqrt{1+x}-1}{x}]$

Ex 11 : Soit f le polynôme de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^8 + x^2 + 2x - 1$

- 1) Montrer que f possède au moins deux racines réelles.
- 2) Montrer qu'il existe une unique racine α qui vérifie $0 \le \alpha \le 1$.
- 3) Déterminer une valeur approchée de α à l'aide votre calculatrice ou d'un ordinateur.

Ex 12: Soit f la fonction définie sur] 0; 1[par $f(x) = \frac{x \ln(x)}{1-x}$

Montrer que f est prolongeable en une fonction continue sur [0;1].

Ex 13: Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{e^x}{x^2}$.

- 1) Montrer que f réalise une bijection de]0,2[dans un intervalle que l'on déterminera.
- 2) Montrer que pour tout entier $n \ge 2$, l'équation f(x) = n admet une unique solution sur [0, 2[, (notée $u_n)$.
- 3) Déterminer le sens de variation de (u_n) et étudier sa limite.

Ex 14: 1) Résoudre $4^x = x^4$ sur \mathbb{R}^+ .

- 2) Montrer que $4^x = x^4$ a une et une seule solution négative, notée α .
- 3) Déterminer une valeur approchée de α avec votre calculatrice.
- Ex 15: Soit f une fonction continue de [0, 1] sur [0, 1], (f est définie sur [0, 1] et elle prend ses valeurs dans [0, 1]). montrer que f admet (au moins) un point fixe. (ie. un $c \in [0;1]$, tel que f(c) = c)

Ex 16: Soit f la fonction définie sur \mathbb{R} par $\forall x \in [0,1], f(x) = xe^x$.

Montrer que f réalise une bijection de [0,1] sur [0,e].

Montrer que f^{-1} est dérivable sur [0, e].

Ex 17: Soit f la fonction définie sur $[0, 4\pi]$ par $f(x) = \sin(x) - x$

montrer que f réalise une bijection de $[0, 4\pi]$ dans $[-4\pi; 0]$ (que nous noterons toujours f).

Quel est l'ensemble de dérivabilité de la fonction f^{-1} .

- **Ex 18:** Montrer que pour tout $x \in \mathbb{R}_+^*$, $\frac{1}{x+1} \leq \ln(x+1) \ln(x) \leq \frac{1}{x}$
- **Ex 19:** On note f la fonction définie sur \mathbb{R}_+^* par : $f(x) = x^3 \ln(x)$.
 - 1) Montrer que f peut être prolongée par continuité en 0.
 - 2) Montrer que ce prolongement est de classe C^2 sur \mathbb{R}_+ .

Ex 20 : Soient n un entier supérieur ou égal à 2 et P une fonction polynomiale de $\mathbb R$ dans $\mathbb R$ de degré n et admettant n racines réelles distinctes.

Montrer que P' admet exactement n-1 racines réelles.

- **Ex 21 :** 1) Déterminer le signe de $x^3 6x^2 + 12x 8$ sur \mathbb{R} .
 - 2) Déterminer l'ensemble de définition de la fonction $f: x \longmapsto \sqrt{x^3 6x^2 + 12x 8}$
 - 3) La fonction f est-elle dérivable en 2?