Fiche de révision — Fonctions

Majoration, minoration, maximum, minimum.

- f est majorée sur E signifie que : $\exists M \in \mathbb{R} : \forall x \in E, \quad f(x) \leq M$
- M est le maximum de f sur D signifie que : $\forall x \in E, \quad f(x) \leq M \quad \text{et} \quad \exists x_0 \in D \text{ tel que } M = f(x_0)$

Sens de variations.

• Définition

f est croissante sur D signifie que : $\forall (a,b) \in D^2, \ a < b \Longrightarrow f(a) \leq f(b)$ f est strictement croissante sur D signifie que : $\forall (a,b) \in D^2, \ a < b \Longrightarrow f(a) < f(b)$

• Théorème

Si
$$f$$
 est strictement croissante sur D alors $\forall (a,b) \in D^2$, $a=b \iff f(a)=f(b)$ $\forall (a,b) \in D^2$, $a < b \iff f(a) < f(b)$ $\forall (a,b) \in D^2$, $a \le b \iff f(a) \le f(b)$

Limites

Définitions

- 25 définitions pour $\lim_{x\to\alpha}=\beta$ avec α et $\beta:a\in\mathbb{R},\ +\infty,\ -\infty,\ a^+$ ou $a^-.$
- f est **continue** en x_0 signifie que :

$$\lim_{x \to x_0} f(x) = \ell \quad \text{et} \quad f(x_0) = \ell$$

Limites et inégalités.

- Si $\lim_{\alpha} f$ et $\lim_{\alpha} g$ existent dans \mathbb{R} et si $\lim_{\alpha} f < \lim_{\alpha} g$ alors f(x) < g(x) sur un voisinage de α .
- Si $\lim_{\alpha} f$ et $\lim_{\alpha} g$ existent dans \mathbb{R} et si $f(x) \leq g(x)$ sur un voisinage de α alors $\lim_{\alpha} f \leq \lim_{\alpha} g$

Théorème de comparaison.

- Si au vois. de α , $f(x) \leq g(x)$ et $\lim_{x \to \alpha} f(x) = +\infty$ alors $\lim_{x \to \alpha} g(x) = +\infty$.
- Si au vois. de α , $g(x) \leq f(x) \leq h(x)$, $\lim_{x \to \alpha} g(x) = \ell \text{ et } \lim_{x \to \alpha} h(x) = \ell$ alors $\lim_{x \to \alpha} f(x)$ existe et vaut ℓ .

Opérations et limites.

- Tableaux pour f + g, $f \times g$ et $\frac{f}{g}$.
- Composée de deux fonctions.

Si
$$\lim_{x \to \alpha} f(x) = \beta$$
 et alors
$$\lim_{y \to \beta} g(y) = \gamma$$

• Une suite et une fonction.

Si
$$\begin{vmatrix} \lim_{n \to +\infty} u_n = \alpha \\ \text{et} & \text{alors la suite } (f(u_n)) \text{ tend vers } \beta \\ \lim_{x \to \alpha} f(x) = \beta \\ \text{quand } n \text{ tend vers } +\infty. \end{vmatrix}$$

Croissances comparées

Pour
$$\alpha > 0$$
, $\lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0$ $\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0$

Théorème de limite monotone

Si f est monotone sur l'intervalle $\alpha; \beta$ alors f admet une limite (réelle ou ∞) à droite en α et à gauche en β .

Fonctions continues

• Opérations et continuité.

Si f et g sont C^0 sur D alors $\alpha f + \beta g$ et $f \times g$ aussi. Si $f \in C^0(I), g \in C^0(J)$ et $f(I) \subset J$ alors $g \circ f \in C^0(I)$

• Théorème des valeurs intermédiaires.

Si f est continue sur un intervalle I contenant a et b, alors $\forall \lambda \in [f(a), f(b)], \exists x_0 \in [a, b] : f(x_0) = \lambda$

• Théorème de la bijection.

Si $\begin{cases} \textcircled{1} & I \text{ est un intervalle} \\ \textcircled{2} & f \text{ est continue sur } I \\ \textcircled{3} & f \text{ est strictement monotone sur } I \\ \text{alors} \end{cases}$ $\begin{cases} \textcircled{1} & f(I) \text{ est un intervalle} \\ \textcircled{2} & f \text{ réalise une bijection de } I \text{ dans } f(I) \end{cases}$

• Image continue d'un segment.

Théorème. L'image directe d'un segment par une fonction continue est segment.

Fonctions dérivables

- **Définition**. f est dérivable en x_0 signifie que $\frac{f(x)-f(x_0)}{x-x_0}$ admet une limite réelle quand $x\to x_0$
- Equation de la tangente ; $y = f'(x_0)(x x_0) + f(x_0)$
- Si f est dérivable en x_0 alors f est continue en x_0 .
- Opérations et dérivabilité. (Voir cours pour les conditions) $(\alpha f + \beta g)' = \alpha f' + \beta g', \quad (f \times g)' = f'g + fg', \\ (g \circ f)' = f' \times g' \circ f \text{ et } (f^{-1})' = \frac{1}{f'(f^{-1})}$
- Extremum local sur un ouvert.

Si $\begin{cases} f:]\alpha, \beta[\to \mathbb{R} \text{ dérivable} \\ f \text{ admet un extr. local en } a \end{cases}$ alors f'(a) = 0

• Théorème de Rolle.

Si $\begin{cases} f \text{ est cont.sur } [a, b] \\ f \text{ est dér. sur }]a, b[\text{ alors } \exists c \in]a, b[: f'(c) = 0 \\ f(a) = f(b) \end{cases}$

• Théorème des accroissements finis.

Si $\begin{cases} f \text{ cont. sur } [a, b] \\ f \text{ der. sur }]a, b[\end{cases}$

alors
$$\exists c \in]a, b[: f'(c) = \frac{f(b) - f(a)}{b - a}$$

• Dérivée et sens de variations.

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ dérivable sur I,

- $\bullet \forall x \in I, \quad f'(x) \geq 0$ si, et seulement si, f est croissante sur I.
- **2** $\forall x \in I$, $f'(x) \leq 0$ si, et seulement si, f est décroissante sur I.

Limite de la somme de deux fonctions : f+g

$\lim_{x \to \alpha} g(x)$ $\lim_{x \to \alpha} f(x)$) e	+∞	$-\infty$
ℓ'			
+∞			
$-\infty$			

Limite du produit de deux fonctions : $(f\times g)$

$\lim_{x \to \alpha} f(x)$ $\lim_{x \to \alpha} g(x)$	<i>ℓ</i> < 0	+∞	 0
$\ell' > 0$			
+∞			
$-\infty$			
0			

Limite du quotient de deux fonctions : $\left(\frac{f}{g}\right)$

$\lim_{x \to \alpha} f(x)$ $\lim_{x \to \alpha} g(x)$	$\ell < 0$	+∞	-∞	0
$\ell' > 0$				
+∞				
$-\infty$				
0+				
0-				

Dérivées des fonctions usuelles

Fonction	dérivée	
$x \longmapsto x^n \ (n \in \mathbb{Z} \setminus \{0\})$	$x \longmapsto nx^{n-1}$	
$x \longmapsto x^{\alpha} \ (\alpha \in \mathbb{R} \setminus \mathbb{Z})$	$x \longmapsto \alpha x^{\alpha - 1}$	
$x \longmapsto a^x$	$x \longmapsto \ln(a)a^x$	
$x \longmapsto \sqrt{x}$	$x \longmapsto \frac{1}{2\sqrt{x}}$	
$x \longmapsto e^x$	$x \longmapsto e^x$	
$x \longmapsto \sqrt[n]{x}$	$x \longmapsto \frac{\sqrt[n]{x}}{nx}$	

Fonction	dérivée
$x \longmapsto \ln(x)$	$x \longmapsto \frac{1}{x}$
$x \longmapsto \sin(x)$	$x \longmapsto \cos(x)$
$x \longmapsto \cos(x)$	$x \longmapsto -\sin(x)$
$x \longmapsto \tan(x)$	$x \longmapsto 1 + \tan^2(x)$
$x \longmapsto \tan(x)$	$x \longmapsto \frac{1}{\cos^2(x)}$
$x \longmapsto \arctan(x)$	$x \longmapsto \frac{1}{1+x^2}$