Feuille_Act_7 : Etude de fonctions. Dérivées.

Ex 1: Soit $f: x \longmapsto \sqrt{e^{(x^2)} - 1}$.

- 1) Montrer que f est définie sur \mathbb{R} .
- 2) Justifier que f est dérivable sur \mathbb{R}^* et donner f'(x) pour $x \in \mathbb{R}^*$.
- 3) La fonction f est-elle dérivable en 0?

Ex 2: Soit $f: x \longmapsto \sqrt{e^{(x^4)}-1}$

- 1) Montrer que f est définie sur \mathbb{R} .
- 2) Justifier que f est dérivable sur \mathbb{R}^* et donner f'(x) pour $x \in \mathbb{R}^*$.
- 3) La fonction f est-elle dérivable en 0?

Ex 3: On considére la fonction f définie sur \mathbb{R} par : f(0) = 1 et $\forall x \in \mathbb{R}^*$, $f(x) = \frac{e^x - 1}{e^x - 1}$

- 1) Justifier que f est une continue sur \mathbb{R} .
- 2) On admet que pour tout réel x on a l'encadrement : $0 \le e^x 1 x \frac{x^2}{2} \le \frac{x^3}{c}$. En déduire que f est dérivable en 0 et préciser f'(0).

 $\mathbf{Ex}\ \mathbf{4}$: Construire le tableaux de variations des fonctions suivantes :

- a) $f: x \longmapsto \arctan(2x^2 + 3)$ sur \mathbb{R} . b) $f: x \longmapsto \sqrt[3]{2x + 1}$ sur \mathbb{R} . c) $f: x \longmapsto \sin(3\arctan(x))$ sur \mathbb{R} . d) $f: x \longmapsto \sqrt[4]{x^2 + 1}$ sur \mathbb{R} .

- e) $f: x \longmapsto x^5 10x$ sur \mathbb{R} . f) $f: x \longmapsto \ln(\cos(x)) + 2x$ sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

Ex 5: Montrer que pour tout réel x non nul on a : $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \operatorname{sgn}(x)\frac{\pi}{2}$ $(\operatorname{sgn}(x) \operatorname{est} \operatorname{la} \operatorname{fonction} \operatorname{qui} \operatorname{vaut} -1 \operatorname{ou} 1 \operatorname{suivant} \operatorname{le} \operatorname{signe} \operatorname{du} \operatorname{r\'eel} x)$

Ex 6: On considère la suite (u_n) définie par $u_0 = \frac{3}{2}$ et la relation de récurrence : $\forall n \in \mathbb{N}, \quad u_{n+1} = 1 + \frac{1}{u_n}$ et on note : f est la fonction définie sur \mathbb{R}^* par : $f(x) = 1 + \frac{1}{x}$

- 1) Montrer que l'intervalle $I = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$; 2 est stable par la fonction f. En déduire que tous les termes de (u_n) sont dans l'intervalle I.
- 2) Montrer que si (u_n) est convergente elle converge vers le nombre d'or : $\alpha = \frac{1+\sqrt{5}}{2}$
- 3) Montrer que pour tout $x \in I$, $|f'(x)| \leq \frac{4}{9}$ En déduire : $\forall n \in \mathbb{N}$, $|u_{n+1} - \alpha| \leq \frac{4}{9} |u_n - \alpha|$ puis : $\forall n \in \mathbb{N}$, $|u_n - \alpha| \leq \left(\frac{4}{9}\right)^n$
- 4) En déduire que (u_n) est convergente.
- 5) Déterminer un entier n_0 pour lequel u_{n_0} est une valeur approchée de α à 10^{-5} près.
- 6) Donner la valeur de u_{n_0} que vous obtenez avec votre calculatrice.

Ex 7: Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ et par f(0) = 0Montrer que f est dérivable sur \mathbb{R} mais f n'est pas de classe \mathcal{C}^1 sur \mathbb{R} .

Ex 8 : Déterminer la dérivée *n*-ième de la fonction $x \mapsto \frac{1}{x+1}$ sur $\mathbb{R} \setminus \{-1\}$.

Ex 9 : A l'aide du théorème des accroissements finis, établir pour $n \ge 1$ les inégalités suivantes :

$$\frac{1}{(n+1)\sqrt{n+1}} \leqslant \frac{2}{\sqrt{n}} - \frac{2}{\sqrt{n+1}} \leqslant \frac{1}{n\sqrt{n}}$$

Ex 10 : Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 e^{-2x}$

- 1) Montrer que f est indéfiniment dérivable sur \mathbb{R} .
- 2) Déterminer f' et f''.
- 3) Montrer que pour tout entier naturel n il existe des réels a_n, b_n et c_n tels que

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = (a_n x^2 + b_n x + c_n) \ e^{-2x}$$

Ex 11: On note
$$f: x \longmapsto \exp\left(-\frac{x}{2}\right)$$
.

Déterminer pour tout entier n la fonction $f^{(n)}$.

Ex 12: G2E 2023 et DS2 BCPST 2C 2025.

On considère la fonction f définie sur [0,1] par : $f(x)=(1-x)\mathrm{e}^{x+\frac{x^2}{2}}$

- 1) a. Démontrer que f réalise une bijection strictement décroissante de [0,1] dans lui-même.
 - b. En déduire que : $\forall x \in [0,1], \quad (1-x)e^x \leqslant e^{-\frac{x^2}{2}}$
- 2) On fixe un réel α appartenant à l'intervalle $\left]\frac{1}{3},\frac{1}{2}\right[$ et on considère les deux suites ci-dessous définies par :

$$\forall n \in \mathbb{N}^*, \quad x_n = n^{-\alpha} \text{ et } y_n = f(x_n).$$

- a. Justifier que : $\forall x \in [0, x_n], \quad y_n e^{-\frac{x^2}{2}} \leqslant (1 x)e^x$.
- b. Démontrer que : $\lim_{n \to +\infty} x_n \sqrt{n} = +\infty$.
- c. Rappeler le développement limité de $\ln(1-x)$ en 0 à l'ordre 3 et en déduire que : $\lim_{n\to+\infty}y_n^n=1$.
- 3) On pose:

$$I_n = \int_0^1 ((1-x)e^x)^n dx.$$

- a. Démontrer que : $y_n^n \int_0^{x_n} e^{-\frac{nx^2}{2}} dx \leqslant I_n \leqslant \int_0^1 e^{-\frac{nx^2}{2}} dx$
- b. En utilisant un changement de variable simple, en déduire :

$$y_n^n \int_0^{x_n \sqrt{n}} e^{-\frac{x^2}{2}} dx \leqslant I_n \sqrt{n} \leqslant \int_0^{\sqrt{n}} e^{-\frac{x^2}{2}} dx$$

c. (pour les 5/2)

En utilisant une variable aléatoire suivant la loi normale $\mathcal{N}(0,1)$, déduire de ce qui précède que :

$$I_n\sqrt{n} \underset{n\to+\infty}{\longrightarrow} \sqrt{\frac{\pi}{2}}.$$