I) La courbe tracée doit passer par les points avec des tangentes cohérentes avec les valeurs de f'.

II) Une solution polynomiale.

1) Soit P est une fonction polynomiale vérifiant les conditions (*), On a P(-1) = P'(-1) = P(4) = P'(4) = 0 donc P est factorisable par $(X+1)^2(X-4)^2$ et comme P est non nul car P(0) = 1 on peut en déduire que :

si P est une fonction polynomiale vérifiant les conditions (*) alors $\deg(P) \geqslant 4$

- 2) $P_1(0) = -4$ donc ce n'est pas P_1
 - $P_3(X) = (X+1)(X-4)^2Q(X)$ avec $Q(-1) \neq 0$ donc ce n'est pas P_3
 - $P_4(2) = 27$ donc ce n'est pas P_4

Le polynôme recherché est P_2

3) Soient P et Q deux polynômes de degré inférieur ou égal à 7 et vérifiant les conditions (*), On a alors

$$(P-Q)(-1) = (P-Q)'(-1) = (P-Q)(0) = (P-Q)'(0) = (P-Q)(2) = (P-Q)'(2) = (P-Q)(4) = (P-Q)'(4) = 0$$

donc P-Q a au moins 8 racines comptées avec leur ordre de multiplicité, et comme de plus $\deg(P-Q)\leqslant 7$ donc P-Q est le polynôme nul. En conclusion :

Le polynôme P_2 est l'unique polynôme de degré inférieur ou égal à 7 et vérifiant les conditions (*)

III)

1) Cherchons une solution sous la forme $f_1(x) = (ax+b)(x+1)^2$ (les deux premières conditions sont respectées). on a alors $f'_1(x) = (3ax + a + 2b)(x+1)$

$$\left\{\begin{array}{ll} f_1(0)=1 \\ f_1'(0)=1 \end{array} \right. \iff \left\{\begin{array}{ll} b=1 \\ a+2b=1 \end{array} \right. \iff \left\{\begin{array}{ll} b=1 \\ a=-1 \end{array} \right.$$

$$f_1$$
 est unique, $f_1: x \longmapsto (x+1)^2(-x+1) = 1 + x - x^2 - x^3$

2) Cherchons une solution sous la forme $f_2(x) = ax^3 + bx^2 + cx + d$ on a alors $f'_2(x) = 3ax^2 + 2bx + c$

$$\left\{ \begin{array}{l} f_2(0) = 1 \\ f_2'(0) = 1 \\ f_2(2) = 2 \\ f_2'(2) = -1 \end{array} \right. \iff \left\{ \begin{array}{l} d = 1 \\ c = 1 \\ 8a + 4b + 2c + d = 2 \\ 12a + 4b + c = -1 \end{array} \right. \iff \left\{ \begin{array}{l} d = 1 \\ c = 1 \\ 8a + 4b = -1 \\ 12a + 4b = -2 \end{array} \right. \iff \left\{ \begin{array}{l} d = 1 \\ c = 1 \\ b = \frac{1}{4} \\ a = -\frac{1}{4} \end{array} \right.$$

$$f_2 \text{ est unique}, f_2 : x \longmapsto 1 + x + \frac{1}{4}x^2 - \frac{1}{4}x^3$$

3) Cherchons une solution sous la forme $f_3(x) = (ax+b)(x-4)^2$ (les deux dernières conditions sont respectées). on a alors $f'_3(x) = (3ax - 4a + 2b)(x - 4)$

$$\begin{cases} f_3(2) = 2 \\ f_3'(2) = -1 \end{cases} \iff \begin{cases} 4(2a+b) = 2 \\ -2(2a+2b) = -1 \end{cases} \iff \begin{cases} 4a+2b=1 \\ 4a+4b=1 \end{cases} \iff \begin{cases} a = \frac{1}{4} \\ b = 0 \end{cases}$$

$$f_3$$
 est unique, $f_3: x \longmapsto \frac{1}{4}x \ (x-4)^2 = 4x - 2x^2 + \frac{1}{4}x^3$

- 4) f est clairement de classe C^1 sur les intervalles [-1,0[,]0,2[et]2,4]. (La restriction de f est polynomiale)
 - \bullet en 0:
 - $lackbox{0}\lim_{0^+}f=\lim_{0^+}f=f(0)=1$ donc f est continue en 0
 - $2 \lim_{x \to 0^+} \frac{f(x) f(0)}{x 0} = \lim_{x \to 0^-} \frac{f(x) f(0)}{x 0} = 1 \text{ donc } f \text{ est d\'erivable en } 0.$
 - ullet on vérifie de même que f est continue en 2, f est dérivable en 2 et f' est continue en 2.

$$f$$
 est de classe C^1 sur $[-1,4]$

et comme toutes les valeurs de f et de f' coı̂ncident avec les valeurs imposées par (*) il vient :

La fonction vérifie les conditions (*)

5) D'une part en 0^-, $\lim_{x\to 0^-} \frac{f'(x) - f'(a)}{x-a} = f_1''(0) = -2$

d'autre part en 0⁺, $\lim_{x\to 0^+} \frac{f'(x) - f'(0)}{x - 0} = f_2''(0) = \frac{1}{2} \neq -2$ donc

f' pas dérivable en 0 et ainsi f n'est pas de classe C^2 sur [-1;4]

IV)

1) Faire plusieurs points de coordonnées (x_i, y_i) en lesquels la courbe a une tangente de pente d_i

2) Pour ce calcul de rang on utilisera que $x_1 \neq x_2$.

$$\begin{aligned} \operatorname{rg}(M) &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 0 & 1 & 2x_1 & 3x_2^2 \\ 0 & 1 & 2x_2 & 3x_2^2 \end{pmatrix} \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & x_2 - x_1 & x_2^2 - x_1^2 & x_2^3 - x_1^3 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 1 & 2x_2 & 3x_2^2 \end{pmatrix} \quad (L_2 - L_1 \to L_2) \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & x_1 + x_2 & x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 1 & 2x_1 & 3x_1^2 \\ 0 & 1 & 2x_2 & 3x_2^2 \end{pmatrix} \quad \begin{pmatrix} \frac{1}{x_2 - x_1} L_2 \to L_2 \end{pmatrix} \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & x_1 + x_2 & x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 1 & 2x_2 & 3x_2^2 \end{pmatrix} \quad (L_3 - L_2 \to L_3) \quad (L_4 - L_2 \to L_4) \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & x_1 + x_2 & x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 0 & x_2 - x_1 & x_1^2 + x_2 + x_2^2 \\ 0 & 0 & x_1 - x_2 & -2x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 0 & 0 & -x_1^2 + 2x_1 x_2 - x_2^2 \end{pmatrix} \quad (L_3 + L_4 \to L_4) \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & x_1 + x_2 & x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 0 & 0 & -x_1^2 + 2x_1 x_2 - x_2^2 \end{pmatrix} \quad (L_4 - L_3 \to L_4) \\ &=& \operatorname{rg} \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 0 & 1 & x_1 + x_2 & x_1^2 + x_1 x_2 + x_2^2 \\ 0 & 0 & 0 & -x_1^2 + 2x_1 x_2 - x_2^2 \end{pmatrix} \quad (L_4 - L_3 \to L_4) \end{aligned}$$

On obtient une matrice triangulaire sans zéro sur la diagonale donc rg(M) = 4

La matrice M est inversible.

Une autre approche trouvée par quelqu'un qui a vu la question hors contexte.

Soit $P: x \longmapsto a + bx + cx^2 + dx^3$,

$$M \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff P(x_1) = P(x_2) = P'(x_1) = P'(x_2) = 0$$

$$\iff (X - x_1)^2 (X - x_2)^2 \text{ divise } P \quad (car \ x_1 \neq x_2)$$

$$\iff P = 0 \quad (car \ deg(P) \leqslant 3)$$

$$\iff \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

La matrice M est inversible.

3) Soit $f_1: x \longmapsto a + bx + cx^2 + dx^3$, on a alors $f_1': x \longmapsto b + 2cx + 3dx^2$

$$\begin{cases} f_1(x_1) = y_1 \\ f_1(x_2) = y_2 \\ f'_1(x_1) = d_1 \\ f'_1(x_2) = d_2 \end{cases} \iff \begin{cases} a + bx_1 + cx_1^2 + dx_1^3 = y_1 \\ a + bx_2 + cx_2^2 + dx_2^3 = y_2 \\ b + 2cx_1 + 3dx_1^2 = d_1 \\ b + 2cx_2 + 3dx_2^2 = d_2 \end{cases} \iff \begin{cases} a + x_1b + x_1^2c + x_1^3d = y_1 \\ a + x_2b + x_2^2c + x_2^3d = y_2 \\ b + 2x_1c + 3x_1^2d = d_1 \\ b + 2x_2c + 3x_2^2d = d_2 \end{cases}$$

ou encore : f_1 vérifie les conditions indiquées si, et seulement si, $M \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ d_1 \\ d_2 \end{pmatrix}$

Or M est inversible donc ce système admet un unique solution (un unique (a, b, c, d))

il existe une unique fonction polynomiale f_1 de degré inférieur ou égal à 3 vérifiant les conditions indiquées

4) (Question plus difficile que prévue et que personne n'a abordé)

Pour obtenir f, on utilise la subdivision $x_1, x_2, ... x_n$.

Sur chaque intervalle $[x_i, x_{i+1}]$ on obtient la fonction polynômiale $f_i: x \longmapsto a_i + b_i x + c_i x^2 + d_i x^3$ en trouvant la solution de :

$$\begin{pmatrix} 1 & x_i & x_i^2 & x_i^3 \\ 1 & x_{i+1} & x_{i+1}^2 & x_{i+1}^3 \\ 0 & 1 & 2x_i & 3x_{i+1}^2 \\ 0 & 1 & 2x_{i+1} & 3x_{i+1}^2 \end{pmatrix} \begin{pmatrix} a_i \\ b_i \\ c_i \\ d_i \end{pmatrix} = \begin{pmatrix} y_i \\ y_{i+1} \\ d_i \\ d_{i+1} \end{pmatrix}$$

La fonction définie sur \mathbb{R} par :

Si
$$x \in]-\infty; x_1[, f(x) = d_1(x-x_1) + y_1,$$

 $\forall i \in [1; n-1] \text{ si } x \in [x_i, x_{i+1}[, f(x) = f_i(x),$
et si $x \in [x_n, +\infty[, f(x) = d_n(x-x_n) + y_n.$

Cette fonction est bien dérivable sur \mathbb{R} et vérifie bien les conditions données au début de IV)

V) Un programme Python

1) la fonction fonction_polynomiale prend en entrée un polynome sous la forme d'une liste de coefficients et renvoie la fonction polynomiale associée.

Exemple avec $P(X) = 1 + 2X + 3X^2 + X^3$:

l'instruction fonction_polynomiale([1,2,3,1]) renvoie la fonction : $x \mapsto 1 + 2x + 3x^2 + x^4$ Petit programme avec un appel à la fonction_polynomiale :

2) La fonction spline([x1,y1,d1],[x2,y2,d2]) permet de déterminer les coefficients du polynôme de degré 3 P vérifiant $P(x_1) = y_1$, $P'(x_1) = d_1$, $P(x_2) = y_2$ et $P'(x_2) = d_2$

Exemple en utilisant un résultat du III (avec f_1):

l'instruction spline([-1,0,0],[0,1,1]) renvoie la liste [1,1,-1,-1] correspondant au polynôme : $1+X-X^2-X^3$

- 3) (C'est une fonction de base qu'il faut connaître) La fonction trace prend en entrée une fonction de \mathbb{R} dans \mathbb{R} et deux réels a et b et qui trace la courbe de la fonction f sur le segment [a,b] dans la fenêtre graphique.
- 4) L est une liste de tuples de nombres (a, b, c) contenant les valeurs (x_i, y_i, d_i) du problème étudié.
- 5) Voir annexe.