Interrogation (25 minutes)

Trois types de questions : $\overline{\mathbf{AJ}}$: avec justifications comme dans une copie, $\overline{\mathbf{SJ}}$: sans justification et $\overline{\mathbf{QC}}$ pour les questions de cours.

 $\boxed{\mathbf{SJ}}$ On note F l'ensemble des $(x,y,z) \in \mathbb{R}^3$ vérifiant : $\begin{cases} x+y+z &= 0 \\ 2x+y-2z &= 0 \end{cases}$

F est un sous espace vectoriel de _____ qui admet pour base ______, et $\dim(F) =$ _______

/3pt

 $\boxed{\mathbf{SJ}} \text{ On considére le système d'inconnue } (x,y) \in \mathbb{C}^2 \text{ suivant : } \begin{cases} x+y &=& \frac{2}{3} \\ x-y &=& \frac{1}{4} \end{cases}$

L'ensemble des solutions est : S =

 $/_{2pt}$

 $\boxed{\mathbf{QC}}$ Donner la définition d'un famille libre de p vecteurs de \mathbb{R}^n .

.....

/2pt

 $\boxed{\textbf{AJ}} \text{ Déterminez deux réels } a \text{ et } b \text{ tels que} : \forall x \in \mathbb{R} \setminus \{2; \frac{3}{2}\}, \quad \frac{1}{(x-2)(2x-3)} = \frac{a}{x-2} + \frac{b}{2x-3}$ Détaillez votre réponse :

 $/_{3pt}$

QC Donner la définition d'un espace vectoriel de dimension finie.

.....

.....

Donner un exemple d'espace vectoriel qui n'est pas de dimension finie :

/3pt

SJ Compléter :

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix} + x_2 \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix} + x_3 \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$$

/1pt

	$\boxed{\mathbf{QC}}$ Donner une caractérisation d'un sous-espace vectoriel d'un espace vectoriel E .
/	
/2pt	
	AJ On note $\mathcal{B} = (u_1, u_2, u_3)$ avec $u_1 = (1, 1, 1), u_2 = (0, 1, 1)$ et $u_3 = (0, 1, -1)$.
	Montrer que \mathscr{B} est une base de \mathbb{R}^3 .
	Déterminer la matrice des cooordonnées de $v=(1,2,3)$ dans la base \mathcal{B} .
	Determiner in matrice des coolidonnées de $v = (1, 2, 3)$ dans la base \mathfrak{B} .
/3pt	
	$oxed{\mathbf{AJ}}$ Compléter. (λ désigne un nombre complexe).
	$\begin{pmatrix} 2 & 3 & 5 \\ 0 & 3 & 5 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix}$
	$\begin{pmatrix} 2 & 3 & 5 \\ 0 & \lambda & \lambda - 1 \\ 0 & 0 & \lambda^2 - 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ admet une unique solution } \mathbf{si, et seulement } \mathbf{si, } \lambda \in \mathbb{R}$
	Justification:
/0	Donner le théorème du cours sur les systèmes qui vous a permis de donner cette équivalence.
/3pt	
	AJ VRAI - FAUX
	1) Affirmation: $ \begin{cases} ax + y = 1 \end{cases} $
	Quel que soit $a \in \mathbb{R}$, le système $\begin{cases} ax + y = 1 \\ x - ay = 3 \end{cases}$ admet une unique solution dans \mathbb{R}^2 .
	Vrai \square Faux \square
	Justification:
	2) Affirmation:
	$\begin{cases} x+y+z = 0 \end{cases}$
	$(1,0,-1) \text{ est une solution du système} \begin{cases} x+y+z &= 0\\ 2x+3y+2z &= 0\\ 2y &= 0 \end{cases}$
	Vrai \square Faux \square Justification :
	3) Affirmation:
	Quel que soit $(a,b,c,d) \in \mathbb{R}^4$ le système $\begin{cases} x+y+z &= 1 \\ ax+by+cz &= d \end{cases}$ a une infinité de solution.
$/_{4pt}$	Vrai □ Faux □ Justification: