Correction du problème de la feuille_Exo_3

I) Autour de l'exponentielle et des matrices nilpotentes

1. Soit
$$(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$$
 tel que $\sum_{k=0}^{n-1} \lambda_k A^k = 0_E$,

en multipliant par
$$A^{n-1}$$
il vient $\sum_{k=0}^{n-1} \lambda_k A^{k+n-1} = 0$

or A est nilpotente donc $A^n = 0$ et ainsi $\lambda_0 A^{n-1} = 0$, on a aussi supposé que $A^{n-1} \neq 0$ ce qui entraine $\underline{\lambda_0 = 0}$,

on a alors
$$\sum_{k=1}^{n-1} \lambda_k A^k = 0$$
,

en multipliant par A^{n-2} il vient $\sum_{k=1}^{n-1} \lambda_k A^{k+n-2} = 0$ ce qui entraine $\lambda_1 A^{n-1} = 0$, puis $\underline{\lambda_1 = 0}$,

on montre ainsi de suite que $\lambda_2=0,\,\dots\,,\,\lambda_{n-1}=0$

En conclusion : la famille \mathcal{F} est libre.

Rédaction de la récurrence finie.

Soit
$$(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$$
 tel que $\sum_{i=0}^{n-1} \lambda_i A^i = 0$,

Montrons par récurrence finie sur k que pour tout $k \in [0, n-1]$, $\forall i \in [0, k], \lambda_i = 0$

• Pour k = 0,

en multipliant par A^{n-1} chaque membre de l'égalité $\sum_{i=0}^{n-1} \lambda_i A^i = 0$, il vient $\sum_{i=0}^{n-1} \lambda_i A^{i+n-1} = 0$ or A est nilpotente donc $A^n = 0$ et ainsi $\lambda_0 A^{n-1} = 0$, et comme $A^{n-1} \neq 0$ il vient $\underline{\lambda_0 = 0}$

• Soit $k \in [0, n-2]$ tel que $\forall i \in [0, k], \lambda_i = 0$,

on a alors
$$\sum_{i=k+1}^{n-1} \lambda_i A^i = 0$$
,

en multipliant par A^{n-k-2} chaque membre de cette égalité, il vient $\sum_{i=k+1}^{n-1} \lambda_i A^{i+n-k-2} = 0$

or A est nilpotente donc $A^n=0$ et ainsi $\lambda_{k+1}A^{n-1}=0$, et comme $A^{n-1}\neq 0$ il vient $\underline{\lambda_{k+1}=0}$, En conclusion de cette récurrence on peut affirmer que $\forall i\in \llbracket 0,n-1\rrbracket,\lambda_i=0$ et ainsi :

la famille \mathcal{F} est libre.

2. $G = \text{Vect}(\mathcal{F})$ et \mathcal{F} est une famille libre de $\mathcal{M}_n(\mathbb{R})$ donc G est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de base \mathcal{F} , comme de plus \mathcal{F} est une famille de n vecteurs,

G est un espace vectoriel réel de base $\mathcal F$ et de dimension n

3. $A^{n-1} \neq 0$ donc elle possède au moins une colonne non nulle, notons j le numéro d'une de ces colonnes.

En posant $X_0 = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j^{\text{ième}}$ ligne, en faisant le produit $A^{n-1}X_0$ on obtient la $j^{\text{ième}}$ colonne de A

et comme cette $j^{\text{ième}}$ colonne est non nulle on a bien montrer

il existe une colonne $X_0 \in \mathcal{E}$ telle que $A^{n-1}X_0 \neq 0$.

4. Soit $(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{R}^n$ tel que $\sum_{k=0}^{n-1} \lambda_k A^k X_0 = 0$,

en multipliant à gauche par A^{n-1} il vient $\sum_{k=0}^{n-1} \lambda_k A^{k+n-1} X_0 = 0$

or A est nilpotente donc $A^n=0$ et ainsi $\lambda_0 A^{n-1} X_0=0$, on a aussi supposé que $A^{n-1} X_0 \neq 0$ ce qui entraine $\underline{\lambda_0=0}$,

on a alors $\sum_{k=1}^{n-1} \lambda_k A^k = 0$,

en multipliant par A^{n-2} il vient $\sum_{k=1}^{n-1} \lambda_k A^{k+n-2} X_0 = 0 \quad \text{ce qui entraine } \lambda_1 A^{n-1} X_0 = 0, \text{ puis } \underline{\lambda_1 = 0},$

on montre ainsi de suite que $\lambda_2=0,\,\dots\,,\,\lambda_{n-1}=0$

En conclusion : la famille \mathcal{B}' est libre.

On sait que:

- \mathcal{E} est un espace vectoriel de dimension n,
- \mathcal{B}' est libre,
- \mathcal{B}' est formée de n vecteurs de \mathcal{E} .

donc \mathcal{B}' est une base de \mathcal{E}

- 5. Recherche de l'ensemble des matrices $M \in E$ telles que AM = MA.
 - (a) $\operatorname{Coord}_{\mathcal{B}'}(MX_0) = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \end{pmatrix}$ donc $MX_0 = \alpha_0 X_0 + \alpha_1 A X_0 + \alpha_2 A^2 X_0 + \dots + \alpha_{n-1} A^{n-1} X_0$

en multipliant à gauche par A on obtient $AMX_0 = \alpha_0AX_0 + \alpha_1A^2X_0 + \alpha_2A^3X_0 + \cdots + \alpha_{n-1}A^nX_0$ comme $A^n = 0$ et AM = MA il vient : $MAX_0 = 0$ $X_0 + \alpha_0$ $AX_0 + \alpha_1$ $A^2X_0 + \alpha_2$ $A^3X_0 + \cdots + \alpha_{n-2}$ $A^{n-1}X_0$

ou encore
$$\operatorname{Coord}_{\mathcal{B}'}(MAX_0) = \begin{pmatrix} 0 \\ \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-2} \end{pmatrix}$$
,

on montre de même que pour tout $k \in [0, n-1]$, $\operatorname{Coord}_{\mathcal{B}'}(MA^kX_0) = \begin{pmatrix} \vdots \\ \alpha_0 \\ \vdots \\ \alpha_{n-1-k} \end{pmatrix}$

- (b) $P = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_{n-1} A^{n-1}$ donc $PA^k X_0 = \alpha_0 A^k X_0 + \alpha_1 A^{k+1} + \alpha_2 A^{k+2} X_0 + \dots + \alpha_{n-1-k} A^{n-1} X_0 + 0$ or la question précédente donne $MA^k X_0 = \alpha_0 A^k X_0 + \alpha_1 A^{k+1} X_0 + \alpha_2 A^{k+2} X_0 + \dots + \alpha_{n-1-k} A^{n-1} X_0$ on a bien : $\forall k \in [0, n-1], \quad MA^k X_0 = PA^k X_0$
- (c) Soit $X \in \mathcal{E}$, on note $\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-2} \end{pmatrix}$ ses coordonnées dans \mathcal{B}' ,

$$MX = M \left(\sum_{k=0}^{n-1} x_k A^k X_0 \right)$$

$$= \sum_{k=0}^{n-1} x_k M A^k X_0$$

$$= \sum_{k=0}^{n-1} x_k P A^k X_0 \qquad \text{d'après la question 5.b.}$$

$$= P \left(\sum_{k=0}^{n-1} x_k A^k X_0 \right)$$

$$= PX$$

$$\forall X \in \mathcal{E}, \quad MX = PX$$

(d) Le résultat précédent permet d'affirmer : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad (M-P)X = 0$ et que donc M-P=0 ou encore M=P.

or $P = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_{n-1} A^{n-1}$ appartient à G, donc

$$M \in G$$
.

6. Dans la question 5), on montre que : $AM = MA \implies M \in G$

Réciproquement si $M \in G$ alors M = Q(A) avec Q un polynôme et en utilisant le théorème (6)) donné en introduction on peut en déduire que AM = MA

En conclusion,

$$\forall M \in E, \quad AM = MA \iff M \in G$$

II) Propriétés de l'exponentielle de matrices nilpotentes

- 1. Distinguons deux cas:
 - si k < n alors $2n 1 k \ge n$ et comme B est nilpotente on a $B^{2n 1 k} = 0$ et ainsi $A^k B^{2n 1 k} = 0$.
 - si $k \ge n$ alors comme A est nilpotente on a $A^n = 0$ et ainsi $A^k B^{2n-1-k} = 0$.

En conclusion, $\forall k \in [0, 2n-1], \quad A^k B^{2n-1-k} = 0$

2. Au lieu de 3) je réponds directement à 4)

$$(A+B)^{2n-1} = \sum_{k=0}^{2n-1} {2n-1 \choose k} A^k B^{2n-1-k} \quad \text{car } AB = BA$$
$$= 0 \quad \text{d'après la question précédente}$$

donc la matrice (A + B) est nilpotente

3. (Questions 3) et 4) bizarrement posées)

$$e^{A}e^{B} = \left(\sum_{i=0}^{+\infty} \frac{1}{i!} A^{i}\right) \left(\sum_{j=0}^{+\infty} \frac{1}{j!} B^{j}\right)$$

$$= \sum_{k=0}^{+\infty} \left(\sum_{i=0}^{k} \frac{A^{i}}{i!} \frac{B^{k-i}}{(k-i)!}\right)$$

$$= \sum_{k=0}^{+\infty} \frac{1}{k!} \left(\sum_{i=0}^{k} \binom{k}{i} A^{i} B^{k-i}\right)$$

$$= \sum_{k=0}^{+\infty} \frac{1}{k!} (A+B)^{k} \qquad \text{car } AB = BA$$

$$= e^{(A+B)} \qquad \text{car } A+B \text{ est nilpotente}$$

On a bien:

$$e^{(A+B)} = e^A e^B$$

4. (Ici je réponds à 4) en admettant 3))

$$e^{A}e^{B} = \sum_{k=0}^{n-1} \sum_{p=0}^{k} \frac{1}{p!(k-p)!} A^{p}B^{k-p}$$

$$= \sum_{k=0}^{n-1} \frac{1}{k!} \sum_{p=0}^{k} \binom{k}{p} A^{p}B^{k-p}$$

$$= \sum_{k=0}^{n-1} \frac{1}{k!} (A+B)^{k} \qquad \text{car } AB = BA$$

$$= e^{(A+B)} \qquad \text{car } A+B \text{ est nilpotente}$$

5. A est nilpotente donc -A est nilpotente et les matrices A et -A commutent. De plus pour deux matrices nilpotentes qui commutent on a : $e^{(A+B)} = e^A e^B$ donc $e^A e^{-A} = e^{-A} e^A = e^0$ Or l'exponentielle de la matrice nulle est égale à I_n donc

 e^A est inversible et son inverse est égale à e^{-A} .

- 6. Montrons par récurrence sur k que : $\forall k \in \mathbb{N}, (e^A)^k = e^{kA}$.
 - pour k = 0,

d'une part $(e^A)^0 = I_n$ et d'autre part $e^{0 \cdot A} = \sum_{i=0}^{n-1} \frac{1}{i!} 0^i A^i = I_n$

on a bien $(e^A)^0 = e^{0 \cdot A}$

• Soit $k \in \mathbb{N}$ tel que $(e^A)^k = e^{kA}$,

 $\begin{array}{lll} \left(e^A\right)^{k+1} & = & \left(e^A\right)^k \times e^A \\ & = & e^{kA} \times e^A & \textit{d'après l'hypothèse de récurrence} \\ & = & e^{kA+A} & \textit{d'après le résultat de la question 4} \\ & = & e^{(k+1)A} \end{array}$

on a bien montré que : si $(e^A)^k = e^{kA}$ alors $(e^A)^{k+1} = e^{(k+1)A}$

En conclusion : $\forall k \in \mathbb{N}, \quad (e^A)^k = e^{kA}$