Correction de la feuille Blitz_2 : Matrices.

I) Effectuer les produits suivants :

1.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 4 & -1 \\ 10 & 13 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
3.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 5 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 9 \\ 4 & 27 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 5 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 9 \\ 4 & 27 \end{pmatrix}$$

2.
$$\begin{pmatrix} 2 & 3 & 0 \\ 1 & 0 & 3 \\ -1 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 7 \\ -6 \end{pmatrix}$$

4.
$$\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} -2 & 12 \\ -5 & 33 \end{pmatrix}$$

II) Cocher les cases : (c'est un exercice de rapidité à remplir sans aucun brouillon, sans aucun calcul) N'hésitez pas à répondre "je ne sais pas".

			M est carrée	Oui \blacksquare	Non \square	je ne sais pas \square
1. <i>N</i>	/1 1	1\	M est diagonale	Oui 🗆	Non \blacksquare	je ne sais pas \square
	$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	1	M est triangulaire supérieure	Oui 🗆	Non \blacksquare	je ne sais pas \square
	$M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	1 1	M est triangulaire inférieure Ou	Oui 🗆	Non ■	je ne sais pas \square
	(1 1	M	M est symétrique	Oui ■	Non \square	je ne sais pas \square
			M est anti-symétrique	Oui 🗆	Non ■	je ne sais pas \square
			M est anti-symetrique	Oui 🗆	NOII	je ne sais p

				M est carrée	Oui ■	Non \square	je ne sais pas \square
$2. M = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$	1 0	\	M est diagonale	Oui 🗆	Non ■	je ne sais pas \square	
	$M = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	-1 2	M	est triangulaire supérieure	Oui 🗆	Non ■	je ne sais pas \square
	$M = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	9 0	M	est triangulaire inférieure	Oui 🗆	Non \blacksquare	je ne sais pas \square
	\-2	-5 0	/	M est symétrique	Oui 🗆	Non ■	je ne sais pas \square
				M est anti-symétrique	Oui ■	Non \square	je ne sais pas \square

							Oui	Non \square	je ne sais pas \square
3.	$M = \left(\right.$	/1	0	0	0/	M est diagonale	Oui ■	Non \square	je ne sais pas \square
		0	6	0	0	M est triangulaire supérieure	Oui ■	Non \square	je ne sais pas \square
		0	0	8	0	M est triangulaire inférieure	Oui ■	Non \square	je ne sais pas \square
		$\sqrt{0}$	0	0	0/	M est symétrique	Oui ■	Non \square	je ne sais pas \square
		`			,	M est anti-symétrique	Oui 🗆	Non	ie ne sais pas \square

			M est carree	Oui	Non \square	je ne sais pas ∟
4. $M = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$		M est diagonale	Oui 🗆	Non \blacksquare	je ne sais pas \square	
	$\mathcal{M} = \begin{pmatrix} 0 \end{pmatrix}$	2)	M est triangulaire supérieure	Oui 🗆	Non \blacksquare	je ne sais pas \square
	$M = \binom{2}{2}$	0)	M est triangulaire inférieure	Oui 🗆	Non ■	je ne sais pas □
	`	,	M est symétrique	Oui ■	Non \square	je ne sais pas \square
			M est anti-symétrique	Oui 🗆	Non ■	je ne sais pas □

				M est carrée	Oui ■	Non \square	je ne sais pas \square						
5.	$M = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1	1\	1\	1 1\	M est diagonale	Oui 🗆	Non \blacksquare	je ne sais pas \square				
		1	0	M est triangulaire supérieure	Oui 🗆	Non	je ne sais pas \square						
		-1		1 0	0	0	0 0	_1 0	0	M est triangulaire inférieure	Oui 🗆	Non \blacksquare	je ne sais pas \square
		U	0)	M est symétrique	Oui ■	Non \square	je ne sais pas \square						
				M est anti-symétrique	Oui 🗆	Non \blacksquare	je ne sais pas \square						

			M est carrée	Oui	Non \square	je ne sais pas 🗆							
$M = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	0 1	0 1	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 5 & 0 \\ 0 & 0 \end{pmatrix}$	1\	M est diagonale	Oui 🗆	Non \blacksquare	je ne sais pas 🗆
		0	0						M est triangulaire supérieure	Oui 🗆	Non \blacksquare	je ne sais pas 🗆	
		0 0	0 0						0 0	0 0	0	M est triangulaire inférieure	Oui 🗆
		, 0/	M est symétrique	Oui 🗆	Non ■	je ne sais pas 🗆							
			M est anti-symétrique	Oui 🗆	Non	je ne sais pas \Box							
	$M = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$	$M = \begin{pmatrix} 0 & 0 \\ 0 & 5 \\ -1 & 0 \end{pmatrix}$	$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 5 & 0 \\ -1 & 0 & 0 \end{pmatrix}$	$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 5 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} M \text{ est diagonale} \\ M \text{ est triangulaire supérieure} \\ M \text{ est triangulaire inférieure} \\ M \text{ est symétrique} \end{array}$	$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 5 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad \begin{array}{c} M \text{ est diagonale} & \text{Oui } \square \\ M \text{ est triangulaire sup\'erieure} & \text{Oui } \square \\ M \text{ est triangulaire inf\'erieure} & \text{Oui } \square \\ M \text{ est sym\'etrique} & \text{Oui } \square \end{array}$	$M \text{ est carr\'ee} \qquad Oui \blacksquare \text{Non} \square$ $M \text{ est diagonale} \qquad Oui \square \text{Non} \blacksquare$ $M \text{ est triangulaire sup\'erieure} \qquad Oui \square \text{Non} \blacksquare$ $M \text{ est triangulaire inf\'erieure} \qquad Oui \square \text{Non} \blacksquare$ $M \text{ est sym\'etrique} \qquad Oui \square \text{Non} \blacksquare$ $M \text{ est anti-sym\'etrique} \qquad Oui \square \text{Non} \blacksquare$							

7.	$M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	$M \text{ est carr\'ee} \qquad Oui ■ \qquad Non □ \qquad je \text{ ne sais pas} □ \\ M \text{ est diagonale} \qquad Oui □ \qquad Non ■ \qquad je \text{ ne sais pas} □ \\ M \text{ est triangulaire sup\'erieure} \qquad Oui □ \qquad Non ■ \qquad je \text{ ne sais pas} □ \\ M \text{ est triangulaire inf\'erieure} \qquad Oui □ \qquad Non ■ \qquad je \text{ ne sais pas} □ \\ M \text{ est sym\'etrique} \qquad Oui ■ \qquad Non □ \qquad je \text{ ne sais pas} □ \\ M \text{ est anti-sym\'etrique} \qquad Oui □ \qquad Non ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \qquad je \text{ ne sais pas} □ \\ M \text{ on } ■ \text{ on } ■$						
8.	$M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
III) Justifier si les matrices suivantes sont inversibles, et justifier votre réponse.								
	Total	ute allusion au rang de la matrice devra être justifiée.						
1.	(201)	M est inversible Oui □ Non \blacksquare je ne sais pas □						
	En effet : $rg(M) < 3$ c	if $L_2 \equiv -L_3$						
2.	$M = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	Mest inversible Oui Non je ne sais pas						
	En effet : $rg(M) < 3$ c	$\operatorname{ar} C_3 = C_1 + C_2$						

3. $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ M est inversible Oui \square Non \blacksquare je ne sais pas \square

4. $M = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 8 \end{pmatrix}$ M est inversible Oui \square Non \blacksquare je ne sais pas \square

5. $M = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$ M est inversible Oui \blacksquare Non \square je ne sais pas \square

6. $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ M est inversible Oui \blacksquare Non \square je ne sais pas \square

7. $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ M est inversible Oui \blacksquare Non \square je ne sais pas \square

8. $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ M est inversible Oui \blacksquare Non \square je ne sais pas \square

En effet : M est diagonale sans zéro sur la diagonale.

En effet : M est triangulaire avec un zéro sur la diagonale. (Attention : M n'est pas échelonnée!!)

En effet : En inversant C_1 et C_3 on obtient une matrice triangulaire sans zéro sur la diagonale.

En effet : $M \in \mathcal{M}_4(\mathbb{R})$ et $\operatorname{rg}(M) = 4$ car les 4 colonnes sont une permutation de la base canonique de $\mathcal{M}_{4,1}(\mathbb{R})$

En effet : rg(M) < 3 car $C_1 = C_2$

En effet : $det(M) = -4 \neq 0$