Feuille Act 9 : Dénombrement.

- Ex 1: 1) Quel est le nombre de codons, sachant que c'est un mot de trois lettres fait avec les lettres A, C, G, T?
 - 2) Quel est le nombre de numéros secrets de carte bleue possibles?
 - 3) Au départ d'un tiercé, il y a 10 chevaux. Combien de podium différents peut-on voir à l'arrivée?
 - 4) On vous donne 5 cartes d'un jeu de 52 cartes. Quel est le nombre de mains différentes vous pouvez obtenir?
 - 5) Un octet est une liste de longueur 8 ne contenant que des 1 ou des 0. Combien de caractères différents peut-on coder avec un octet?
 - 6) Dans une population de 66 000 000 personnes on prélève un échantillon de taille 1000. Combien y a-t-il d'échantillons possibles?
 - 7) On remplit toutes les cases de la grille suivante avec les chiffres : 1, 2, ..., 9.

Combien de résultats différents peut-on obtenir?

- 8) 45 élèves rentrent dans une salle où il y a 48 places assises. Combien de répartitions différentes peut-on observer?
- 9) Jouer une grille simple au loto consiste à cocher 6 cases sur une grille en comportant 49. Combien y a-t-il de grilles possibles?
- 10) Quel est le nombre de façons de cocher 4 cases dans un tableau de 14 cases comme sur la figure suivante?

11) On peut choisir de mettre ou non une croix dans chacune des cases du carré ci-contre

Combien y a-t-il de résultats possibles?

12) On doit cocher exactement 4 cases du carré ci-contre

Combien y a-t-il de résultats possibles?

- 13) On considère une urne contenant 20 jetons numérotés de 1 à 20.
 - a. On tire successivement et avec remise 5 jetons de cette urne. Combien y a-t-il de résultats possibles?
 - b. On tire successivement et sans remise 5 jetons de cette urne. Combien y a-t-il de résultats possibles?
 - c. On tire successivement et sans remise 20 jetons de cette urne. Combien y a-t-il de résultats possibles?
 - d. On tire simultanément 5 jetons de cette urne. Combien y a-t-il de résultats possibles?
- 14) On veut créer avec Python une liste L contenant toutes les listes de longueur 10 contenant exactement deux 1, trois 2 et cinq 3. Quelle sera la longueur d'une telle liste L?
- Ex 2: Avec les élèves de la classe (effectif: 39). On souhaite désigner une délégation de 5 élèves dont un leader. Combien de délégations différentes peut-on désigner?
- Ex 3: Soient n et p deux entiers vérifiant $1 \le p \le n$ et E un ensemble de cardinal n. On note A l'ensemble des couples (x, M) où $x \in E$, $M \subset E$ vérifiant $x \in M$ et card(M) = p.

$$A = \{(x, M) \in E \times \mathscr{P}(E) \mid x \in M \text{ et } \operatorname{card}(M) = p \}$$

Dénombrer de deux manières différentes A pour retrouver une formule du cours sur les coefficients binomiaux.

Ex 4: Avec les élèves de la classe (effectif: 39).

On voudrait désigner un groupe de colle de 3 élèves. (une partie quelconque de la classe composée de 3 élèves)

- 1) Combien y a-t-il de groupes de colle possibles avec Nokomie?
- 2) Combien y a-t-il de groupes de colle possibles sans Nokomie?
- **Ex 5:** Soient n et p deux entiers vérifiant $1 \le p \le n$, E un ensemble de cardinal n et $a \in E$.
 - 1) Combien y a-t-il de parties de E à p éléments?
 - 2) Combien y a-t-il de parties de E à p éléments contenant a?
 - 3) Combien y a-t-il de parties de E à p éléments ne contenant pas a?
 - 4) Retrouver une formule du cours sur les coefficients binomiaux.

- 1) Combien de poignées différentes peut-on obtenir?
- 2) Parmi l'ensemble des poignées, combien contiennent exactement 2 coeurs?
- 3) Pour k un entier entre 0 et 5, quel est le cardinal de (X = k)?

Ex 7: Soit n un entier naturel $(n \ge 3)$. On lance une pièce n fois de suite.

1) Combien de résultats peut-on obtenir?

On note X le nombre de piles obtenus.

- 2) Quel est le cardinal de l'événement $(X \ge 1)$?
- 3) Quel est le cardinal de l'événement (X = 1)?
- 4) Combien de résultats contiennent exactement deux piles?
- 5) Combien de résultats contiennent exactement deux piles qui sont consécutifs?
- 6) Combien y a-t-il de résultats avec un pile à la fin et exactement 3 piles en tout?

Ex 8: Soit n un entier naturel $(n \ge 2)$. Une urne contient 3 boules blanches et n boules vertes.

On tire successivement et sans remise toutes les boules de l'urne.

- 1) Combien y a-t-il de résultats possibles?
- 2) Combien y a-t-il de résultats possibles où les trois boules ne sont pas toutes les trois consécutives?
- 3) Combien y a-t-il de résultats possibles où entre deux boules blanches il y a au moins une boule verte?

Ex 9: Exercices pour tableau

- 1) $Tableau\ 1$: Ecrire l'ensemble des listes de 3 éléments de $\{0,1\}$.
- 2) Tableau 2: Ecrire l'ensemble des listes sans répétition de 2 éléments de $\{1,2,3,4\}$.
- 3) Tableau 3: Ecrire l'ensemble des combinaisons de 3 éléments de $\{1, 2, 3, 4, 5\}$.
- 4) Tableau 4: Ecrire l'ensemble des parties de {1, 2, 3, 4}.
- 5) Tableau 5: Ecrire l'ensemble des permutations de $\{1, 2, 3\}$.
- 6) Tableau 6: Ecrire l'ensemble des anagrammes du mot AABCC.

Ex 10 : Soit E un ensemble fini de cardinal n.

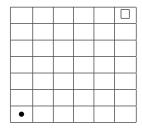
Combien existe t-il de couples (A, B) de parties de E tels que $A \cap B = \emptyset$?

Indication: On pourra distinguer les cas en fonction du cardinal de A.

Ex 11: Dans un quadrillage de $p \times n$ carreaux $(n \text{ et } p \in \mathbb{N}^*)$,

Combien y a-t-il de chemins allant du coin inférieur gauche au coin supérieur droit avec uniquement des pas vers la droite ou vers le haut?

Exemple pour p = 7 et n = 6,



Pour que • aille en □ il doit faire 6 déplacements vers le haut et 5 vers la droite.

Ex 12: Soient n un entier et E un ensemble de cardinal n, on note :

$$S_1 = \sum_{A \in \mathscr{P}(E)} \operatorname{card}(A)$$
 $S_2 = \sum_{(A,B) \in \mathscr{P}(E)^2} \operatorname{card}(A \cap B)$ $S_3 = \cdots$

et pour chaque $k \in [1, n]$, $\mathcal{P}_k(E)$ l'ensemble des conbinaisons de k éléments de E.

- 1) En remarquant que $(\mathscr{P}_k(E))_{1 \leqslant k \leqslant n}$ est une partition de $\mathscr{P}(E)$ montrer que : $S_1 = \sum_{k=0}^n k \binom{n}{k}$
- 2) En remarquant que $A \longmapsto \overline{A}$ est une bijection de $\mathscr{P}(E)$ dans $\mathscr{P}(E)$ montrer que : $2S_1 = n2^n$
- 3) Soit $x \in E$, que vaut $\sum_{A \in \mathscr{P}(E)} \mathbb{1}_A(x)$, en déduire encore une fois la valeur de S_1 .
- 4) Montrer que : $S_2 = n4^{n-1}$.