Fiche de révision – Dénombrement

1. Cardinal

• Définition, notation.

Un ensemble est dit fini lorsqu'il existe $n \in \mathbb{N}$ et une bijection de [1; n] dans E.

Dans ce cas, n est unique et s'appelle cardinal de E, on le note card(E)

On note:

$$E = \{x_k \mid k \in [1, n]\}$$
 avec $\operatorname{card}(E) = n$

ou

$$E = \{x_k \mid k \in [1, n] \} \text{ avec } i \neq j \Rightarrow x_i \neq x_j$$

• Propriétés.

Si $A \cap B = \emptyset$ alors $\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B)$ Si $A \subset B$ alors $\operatorname{card}(A) \leq \operatorname{card}(B)$

• Théorème (Réunions disjointes).

Si $(A_i)_{i\in [\![1,p]\!]}$ est une famille de p parties deux à deux disjointes, alors

$$\operatorname{card}\left(\bigcup_{i=1}^{p} A_{i}\right) = \sum_{i=1}^{p} \operatorname{card}(A_{i})$$

• Partition.

 $(A_i)_{i\in \llbracket 1,p\rrbracket}$ est une partition de B signifie que :

0 les $(A_i)_{i \in [1,p]}$ sont deux à deux disjoints

$$\mathbf{2} \quad B = \bigcup_{k=1}^{n} A_k$$

• Lemme des bergers.

Si les $(A_i)_{i \in \llbracket 1,p \rrbracket}$ sont deux à deux disjoints,

si
$$B = \bigcup_{k=1}^{p} A_k$$
 et si $\operatorname{card}(A_k) = m$
alors : $\operatorname{card}(B) = p \times m$

• Formule du crible.

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$$

Généralisation à card
$$\left(\bigcup_{k=1}^{n} A_{k}\right) = \cdots$$

• Produit cartésien.

$$card(A \times B) = card(A) card(B)$$

2. Dénombrement d'ensembles finis usuels

E de cardinal n.

- Le nombre de listes de p éléments de E est égal à n^p .

 Modélisation : Tirage successif avec remise.
- Le nombre de listes sans répétitions de p éléments de E est égal à $\frac{n!}{(n-p)!}$

Modélisation: Tirage successif sans remise.

• Le nombre de permutations de E est égal à n!Modélisation: Tirage successif exhaustif sans remise.

- Le nombre de combinaisons de p éléments de E vaut $\binom{n}{p}$ Modélisation: Tirage simultané.
- Le nombre de parties de E est égal à 2^n .

• Notations :

Les listes entre parenthèses (x_1, \ldots, x_p) Les parties entre accolades $\{x_1, \ldots, x_p\}$

• Anagrammes (Complément).

Deux raisonnements, deux formules :

$$\frac{N!}{n_1! \, n_2! \, \cdots \, n_p!}$$

$$\binom{N}{n_1} \binom{N-n_1}{n_2} \binom{N-n_1-n_2}{n_3} \cdots \binom{n_{p-1}+n_p}{n_{p-1}}$$

3. Somme sur un ensemble fini.

$$E = \{e_k \mid k \in \llbracket 1, n \rrbracket \} \text{ avec } \operatorname{card}(E) = n$$

- Définition et notation. $\sum_{x \in E} f(x) = \sum_{i=1}^{n} f(e_i)$
- Propriétés.
 - **0** Si A_1, A_2, \ldots, A_p forment une partition de E alors

$$\sum_{x \in E} f(x) = \sum_{k=1}^{p} \left(\sum_{x \in A_k} f(x) \right)$$

2 Si σ est une bijection de E dans E,

$$\sum_{x \in E} f(x) = \sum_{x \in E} f(\sigma(x))$$

 $\textbf{ Soit } A \text{ une partie de } E, \quad \operatorname{card}(A) = \sum_{x \in E} \mathbb{1}_A(x)$

4. Applications et cardinaux (complément)

E et F de cardinaux respectifs n et p

- $\bullet\,$ Le nombre d'applications de E dans F est égal à $p^n.$
- Le nombre d'injections de E dans F est égal à $\frac{p!}{(p-n)!}$
- $(ici \ n = p)$

Le nombre de bijections de E dans F est égal à n!.

- Conditions nécessaires sur les cardinaux. S'il existe une injection de E dans F alors $n \leq p$. S'il existe une surjection de E dans F alors $n \geq p$. S'il existe une bijection de E dans F alors n = p.
- Théorème (Entre deux ensembles de même cardinal).
 Soit f: E → F avec card(E) = card(F)
 f est injective si, et seulement si, f est bijective.

f est surjective si, et seulement si, f est bijective.