Correction de l'interrogation sur le DS 3

Ex 1: $\bullet x \longmapsto e^x$ et $x \longmapsto e^{-x}$ sont continues sur \mathbb{R} . (fonctions usuelles)

donc f est continue sur $]-\infty;0[$ et sur $]0;+\infty[$

• $\lim_{x\to 0}e^x=1$, $\lim_{x\to 0}e^{-x}=1$ et f(0)=1 donc $\lim_{0^-}f=\lim_{0^+}f=f(0)$ et ainsi

donc f est continue en 0.

En conclusion:

f est continue sur \mathbb{R}

Ex 2: a) $x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} (fonction polynomiale) donc f est dérivable sur [0,1]

b) • Pour
$$x < 0$$
, $\frac{f(x) - f(0)}{x - 0} = \frac{1 - x - 1}{x} = -1$ donc $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = -1$

• Pour
$$x > 0$$
, $\frac{f(x) - f(0)}{x - 0} = \frac{x^2 + 1 - 1}{x} = x$ donc $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 0$

(La limite du taux d'accroissement est différente à droite et à gauche) donc

f n'est pas dérivable en 0

Remarque : f est dérivable à gauche et à droite de 0, mais pas en 0.

c) • Pour
$$x < 1$$
, $\frac{f(x) - f(1)}{x - 1} = \frac{1 + x^2 - 2}{x - 1} = x + 1$ donc $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = 2$

• Pour
$$x > 1$$
, $\frac{f(x) - f(1)}{x - 1} = \frac{2x - 2}{x - 1} = 2$ donc $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = 2$

(La limite du taux d'accroissement est réelle et la même à droite et à gauche) donc

f est dérivable en 1

Ex 3: • f(1) = 2 et • f est dérivable sur \mathbb{R}_+^* et pour x > 0, $f'(x) = 2 - \frac{1}{x}$, donc f'(1) = 1Or T a pour équation y = f'(1)(x - 1) + f(1) donc T: y = x + 1

Ex 4: On reconnaît le taux d'accroissement en -1 de la fonction $f: x \longmapsto x^5 + 4x^4$ sa dérivée est : $f': x \longmapsto 5x^4 + 16x^3$ ce qui donne f'(-1) = -11

$$\lim_{x \to -1} \frac{x^5 + 4x^4 - 3}{x + 1} = -11$$

Ex 5: $\omega \neq 1 \text{ donc } 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = \frac{1 - \omega^7}{1 - \omega}$ et $\omega^7 = e^{2i\pi} = 1 \text{ donc}$

$$S = 0$$

Ex 6: a) On remarque que $\omega^5 = e^{2i\pi} = 1$

• D'une part pour tout entier k $(\omega^k)^5 = (\omega^5)^k = 1$ donc

 $1, \omega, \omega^2, \omega^3$ et ω^4 sont 5 racines du polynôme X^5-1 .

• D'autre part, pour θ et θ' dans $[0; 2\pi[$, si $\theta \neq \theta'$ alors $e^{i\theta} \neq e^{i\theta'}$ et e^{i0} , $\omega = e^{\frac{2i\pi}{5}}$, $\omega^2 = e^{\frac{4i\pi}{5}}$, $\omega^3 = e^{\frac{6i\pi}{5}}$ et $\omega^4 = e^{\frac{8i\pi}{5}}$ donc

 $1, \, \omega, \, \omega^2, \, \omega^3$ et ω^4 sont deux à deux distinctes

En conclusion:

$$1, \omega, \omega^2, \omega^3$$
 et ω^4 sont 5 racines distinctes de $X^5 - 1$.

b) Sachant que $\deg(X^5-1)=5$, on déduit du résultat précédent qu'il existe $\lambda\in\mathbb{C}$ tel que :

$$X^{5} - 1 = \lambda(X - 1)(X - \omega)(X - \omega^{2})(X - \omega^{3})(X - \omega^{4})$$

et comme le polynôme est unitaire il vient

$$X^5 - 1 = (X - 1)(X - \omega)(X - \omega^2)(X - \omega^3)(X - \omega^4)$$

- Ex 7: Si x_1 , x_2 , x_3 et x_4 ne sont pas deux à deux distincts, alors au moins deux lignes de A_x sont égales donc $\operatorname{rg}(A_x) < 4$ et ainsi A_x n'est pas inversible.
 - Si x_1 , x_2 , x_3 et x_4 sont deux à deux distincts, Soit $(\lambda_0, \lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^4$, on note $P(X) = \lambda_0 + \lambda_1 X + \lambda_2 X^2 + \lambda_3 X^3$

$$A_{x} \begin{pmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} P(x_{1}) = 0 \\ P(x_{2}) = 0 \\ P(x_{3}) = 0 \\ P(x_{4}) = 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff P(X) = 0 \qquad (En \ effet \ deg(P) \leqslant 3 \ et \ P \ \grave{a} \not 4 \ racines \ distinctes)$$

$$\iff \begin{pmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

On a montré que $A_xX=0 \iff X=0$ ce qui permet d'affirmer que A_x est inversible. En conclusion :

 A_x est inversible si, et seulement si, x_1, x_2, x_3 et x_4 sont deux à deux distincts

Ex 8: a) On note $f: x \mapsto \cos(x) - \frac{x}{n}$, de sorte que : $f(x) = 0 \iff x$ solution de (E_n) f est dérivable sur $\left[0; \frac{\pi}{2}\right]$ et sur cet intervalle, $f'(x) = -\sin(x) - \frac{1}{n} < 0$.

La fonction f est donc continue et strictement décroissante sur l'intervalle $\left[0; \frac{\pi}{2}\right]$. donc f réalise une bijection de $\left[0; \frac{\pi}{2}\right]$ dans $\left[f\left(\frac{\pi}{2}\right); f(0)\right] = \left[-\frac{\pi}{2n}; 1\right]$

et comme $0 \in \left[-\frac{\pi}{2n}; 1\right]$, il existe bien un unique x dans $\left[0; \frac{\pi}{2}\right]$ tel que f(x) = 0

$$(E_n)$$
 a une unique solution sur $\left[0; \frac{\pi}{2}\right]$

b) from math import cos, pi

Ex 9: a)
$$0 < \frac{1}{x}$$
 donc $0 < \arctan\left(\frac{1}{x}\right) < \frac{\pi}{2}$ (fonction strictement croissante de \mathbb{R} dans $] - \frac{\pi}{2}; \frac{\pi}{2}[)$ on en déduit $-\frac{\pi}{2} < -\arctan\left(\frac{1}{x}\right) < 0$ puis $0 < \frac{\pi}{2} -\arctan\left(\frac{1}{x}\right) < \frac{\pi}{2}$

$$\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

- b) Pour t un réel quelconque, $\arctan(t)$ est l'unique réel θ de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ vérifiant $\tan(\theta) = t$
- c) On sait déjà que $\theta\in\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ il suffit donc de montrer que $\tan(\theta)=x$

$$\tan(\theta) = \tan\left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right)$$

$$= \frac{1}{\tan\left(\arctan\left(\frac{1}{x}\right)\right)} \quad car \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \quad et \quad \sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

$$= x$$

En conclusion:

$$\theta = \arctan(x)$$

Ex 10 : a) On sait que $\forall n \in \mathbb{N}, -\frac{\pi}{2} + n\pi < x_n$; de plus on sait que $\lim_{n \to +\infty} -\frac{\pi}{2} + n\pi = +\infty$ on peut en déduire *(comparaison)* que :

$$\lim_{n \to +\infty} x_n = +\infty$$

b) Pour tout $n \in \mathbb{N}^*$, $n\pi - \frac{\pi}{2} < x_n < n\pi + \frac{\pi}{2}$ donc $1 - \frac{1}{2n} < \frac{x_n}{n\pi} < 1 + \frac{1}{2n}$ or $\lim_{n \to +\infty} 1 - \frac{1}{2n} = 1$ et $\lim_{n \to +\infty} 1 + \frac{1}{2n} = 1$ donc (th. des gendarmes) $\lim_{n \to +\infty} \frac{x_n}{n\pi} = 1$ et ainsi :

$$x_n \sim n\pi$$