Interrogation sur le DS 3 (25 minutes)

Ci-dessous figure, en face de votre nom, la liste des exercices à réaliser.

Vous êtes libre de choisir l'ordre dans lequel vous les ferez, mais vous ne devez effectuer que ceux indiqués.

Nom	Exercices
AUDIER Alix	1,2,3,5,10
AUDOLI Thaïs	1,2,3,5,10
BA Aïcha	1,2,5,9,10
BONNEFOY Lucas	6,7,8,9
BOUROUF Nokomie	2,4,7,8,9
BOUZLAFA Imen	2,3,5,9,10
CABARET Allan	1,2,3,5,10
CALDAS Eva	2,5,9,10
COMTESSE Oriane	2,6,7,8,10
DA CRUZ Thomas	2,4,8,9,10
DIA Erwan	1,2,3,5,10
DOFFEMONT Caroline	1,2,5,9,10
DUBEAU Ilies	2,6,8,9,10
ECALARD Alexane	2,3,8,9,10
FAKHOURY Marie	2,5,8,9,10
FANTIN Melvin	2, 5, 8,9,10
GUINAUDEAU Gala-Anne	2, 5, 8,9,10
KAMALENDRAN Suwaraka	1,2,3,5,10
KOPP Maxence	1,2,3,5,10
LAROCHE Zoé	2, 4,8,9,10
LAVAUD Lou-Eline	2,3,4,5,9
LAVAUD-VIOLETTE Celia	4,6,8,9,10
LOEFFLER Mathis	2,4,7,9
MARTIN-HANIER Gilda	1,2,3,5,10
MILOT Camille	1,2,3,5,10
MOUTARDIER Emma	1,2,3,5,10
NEDJAR Owen	1,6,8,9,10
PIGIER Jeanne	2,3,5,8,10
PININGRE Nina	4,5,8,9,10
POULIQUEN Klervie	2,6,8,9,10
ROBERT Héléna	2,7,9,10
ROCCA Timothée	3,5,8,9,10
RZEPIAK Lola	1,2,8,9,10
RZEPIAK Ludivine	2,3,8,9,10
SOUPRAYEN Jade	1,2,4,8,9
TABBAGH Alexandre	4,6,8,9
TEP SALY Sonia	1,2,3,8,9
TIBERGHIEN Emma	2,6,8,9,10
VALSAQUE Lorraine	2,4,5,7,8

Recopiez la liste des exercices que vous devez faire.

Ex 1 : On note f la fonction définie sur $\mathbb R$ par :

si
$$x < 0$$
, $f(x) = e^x$ et si $x \ge 0$, $f(x) = e^{-x}$

Justifier que f est continue sur \mathbb{R} .

Ex 2 : On note f la fonction définie sur $\mathbb R$ par :

si
$$x < 0$$
, $f(x) = 1 - x$, si $0 \le x < 1$, $f(x) = x^2 + 1$ et si $x \ge 1$, $f(x) = 2x$

- a) Justifier que f est dérivable sur]0,1[.
- b) f est-elle dérivable en 0?
- c) f est-elle dérivable en 1?

Ex 3: On note $f: x \longmapsto 2x - \ln(x)$.

On sait que f est dérivable en 1, la tangente à C_f au point d'abscisse 1 existe donc, on la note T. Déterminer l'équation réduite de T.

Ex 4: Déterminer la limite de $\frac{x^5 + 4x^4 - 3}{x + 1}$ quand x tend vers -1.

Ex 5: On note $\omega = e^{\frac{2i\pi}{7}}$ simplifier $S = 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6$

Ex 6: On note $\omega = e^{\frac{2i\pi}{5}}$,

- a) Justifier que 1, ω , ω^2 , ω^3 et ω^4 sont 5 racines distinctes du polynôme X^5-1 .
- b) En déduire la factorisation de $X^5 1$ dans $\mathbb{C}[X]$.

Ex 7: Pour $x = (x_1, x_2, x_3, x_4) \in \mathbb{C}^4$, on note: $A_x = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix}$

Montrer que A_x est inversible si, et seulement si, x_1, x_2, x_3 et x_4 sont deux à deux distincts.

Ex 8: Soit *n* un entier naturel non nul, on note (E_n) l'équation $\cos(x) = \frac{x}{n}$.

- a) Montrer que (E_n) a une unique solution sur $\left[0; \frac{\pi}{2}\right]$ que nous noterons x_n .
- b) Ecrire une fonction Python valeur_x(n) qui pour un entier n donné en paramètre renvoie une valeur approchée de x_n à 10^{-6} près.

Ex 9: Soit x > 0, on note: $\theta = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)$.

- a) Montrer que : $\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.
- b) Rappeler pour un réel t la définition du réel $\arctan(t)$.
- c) En déduire que, $\theta = \arctan(x)$

Ex 10 : On sait que la suite (x_n) vérifie : $\forall n \in \mathbb{N}, \ x_n \in \left] -\frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi \right[$.

- a) Montrer que la suite (x_n) admet une limite qu'on déterminera.
- b) Déterminer un équivalent simple de x_n quand n tend vers $+\infty$.