Correction de la feuille_Act_9

Ex 1: 1) Dénombrer l'ensemble des codons revient à dénombrer les listes de 3 éléments de $\{A, C, G, T\}$

On peut construire
$$4^3 = 64$$
 codons différents.

On peut aussi refaire le raisonnement : Pour le premier nucléotide on a 4 choix possibles, puis une fois ce choix fait, on a encore 4 choix pour le deuxième et 4 pour le troisième.

On peut construire
$$4^3 = 64$$
 codons différents.

2) Ici on demande le cardinal de $[0; 9]^4$

Le nombre de codes de carte bleue est égal à
$$10^4 = 10\,000$$
.

On peut aussi refaire le raisonnement : Pour le premier numéro on a 10 choix possibles, puis une fois ce choix fait, on a encore 10 choix pour le deuxième et ainsi de suite.

Le nombre de codes de carte bleue est égal à
$$10^4 = 10\,000$$
.

3) Dénombrer le nombre de podium revient à déterminer le nombre d'arrangements de 3 éléments de [1; 10].

Le nombre de podiums différents est égal à
$$10 \times 9 \times 8 = 720$$
.

On peut aussi refaire le raisonnement : Pour le premier a 10 choix possibles, puis une fois ce choix fait, on a 9 choix pour le deuxième et 8 pour le troisième.

Le nombre de podiums différents est égal à
$$10 \times 9 \times 8 = 720$$
.

4) C'est le nombre de résultats lors d'un tirage simultané de 5 objets dans une urne en contenant 52. C'est le nombre de parties à 5 objets d'un ensemble de cardinal 52.

Le nombre d'échantillons est égal à
$$\binom{52}{5} = 2598960$$

Remarque : Ici il est plus difficile de refaire le raisonnement.

Pour les questions suivantes je fais juste le lien avec le cours et je donne la réponse.

- 5) listes, $2^8 = 256$.
- 6) Combinaisons, $\binom{66000000}{1000}$
- 7) Permutations, 9!
- 8) Arrangements, $\frac{48!}{3!}$
- 9) Combinaisons $\binom{49}{6}$
- 10) Combinaisons $\binom{14}{4}$
- 11) Nombre de parties, 2⁹.
- 12) Combinaisons $\binom{9}{4}$
- 13) a. Listes, 20^5 .
 - b. Arrangements, $20 \times 19 \times 18 \times 17 \times 16$.
 - c. Permutations, 20!
 - d. Combinaisons, $\binom{20}{5}$
- 14) La longueur de L sera : $\frac{10!}{2! \, 3! \, 5!}$ (Nombre d'anagrammes)

- Ex 2: Plusieurs raisonnements possibles : (A chaque phrase de raisonnement visualiser l'arbre de choix associé)
 - Il y a 39 possibilités pour choisir le leader et une fois choisi on a $\binom{38}{4}$ possibilités pour les quatre autres élèves, le nombre de délégations est égal à : $39 \times \binom{38}{4}$
 - **2** Il y a $\binom{39}{5}$ possibilités pour choisir les 5 élèves et une fois choisi on a 5 possibilités pour le choix du leader, le nombre de délégations est égal à : $\binom{39}{5} \times 5$
 - **3** (pas vu au tableau) Il y a $\binom{39}{4}$ possibilités pour choisir les 4 élèves qui ne sont pas leader et une fois choisi on a 35 possibilités pour le choix du leader, le nombre de délégations est égal à : $\binom{39}{4} \times 35$ Ces trois raisonnements donnent le même résultat (heureusement!) :

le nombre de délégations différentes de 5 élèves avec un leader est égal à : 2878785

Ex 3 : Avec le même raisonnement que dans l'Ex 1. on obtient le cardinal de l'ensemble A les trois expressions suivantes donne le même entier :

 $\bullet \ n\binom{n-1}{p-1}$

 $\mathbf{Q} \binom{n}{p} p$

On retrouve ici la démonstration de ce que vous appellez la formule du chef :

$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$$

Ex 4 : Remarque : Le nombre de groupes de colle possible est $\binom{39}{3} = 9139$

(nombre de parties de la classe composées de 3 élèves)

1) Le nombre de groupes de colle avec Nokomie est $\binom{39}{2} = \frac{39 \times 38}{2} = 741$

(nombre de parties de 2 élèves pris dans la classe privé de Nokomie)

2) Le nombre de groupes de colle sans Nokomie est $\binom{38}{3} = 8436$

(nombre de parties de 3 élèves pris dans la classe privé de Nokomie)

Ex 5: 1) C'est une question de cours.

Le nombre de parties de
$$E$$
 à p éléments est égal à $\binom{n}{p}$

2) Pour définir une telle partie il faut et il suffit désigner les p-1 éléments qui sont avec a.

Le nombre de parties de E à p éléments avec a est égal à $\binom{n-1}{p-1}$

3) On demande ici le nombre de parties de $E \setminus \{a\}$ à p éléments .

Le nombre de parties à p éléments de E avec a est égal à $\binom{n}{p-1}$

4) En notant A l'ensemble des parties de E à p éléments et B l'ensemble des parties de E avec a. La question 1) montre que $\operatorname{card}(A) = \binom{n}{p}$, la question 2) montre que $\operatorname{card}(A \cap B) = \binom{n-1}{p-1}$ et la question 3) montre que $\operatorname{card}(A \cap \overline{B}) = \binom{n-1}{p-1}$,

Or $\operatorname{card}(A) = \operatorname{card}(A \cap B) + \operatorname{card}(A \cap \overline{B})$ donc

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n}{p-1} \quad (Formule \ du \ triangle \ de \ Pascal)$$

Ex 6: (non corrigé)

Ex 7: (non corrigé)

Ex 8: (non corrigé)

Ex 9: (non corrigé)

Ex 10: (non corrigé)

Ex 11 : En classe je n'ai fait que l'exemple, mais le raisonnement est le même. Chaque chemin peut être vu comme un anagramme du mot : $\underbrace{H\cdots H}_{p-1}\underbrace{D\cdots D}_{n-1}$,

il y a autant de chemins que d'anagrammes de ce mot :

Le nombre de chemins est égal à
$$\binom{n+p-2}{n-1}$$

Sur l'exemple on avait trouvé : $\binom{11}{5} = 462$ chemins possibles.