Correction feuille Act 10 : Probabilités. Ensembles. Evénements

- Ex 1: On note n=1000 et pour $k \in [1;n]$, S_k : "obtenir un \bullet au kième lancer". Les lancers sont indépendants donc $(S_k)_{1 < k \le n}$ est une liste d'événements mutuellement indépendants.
 - 1) Ici on veut la probabilité de l'événement $A = \bigcap_{k=1}^{n} S_k$, et comme les lancers sont indépendants il vient :

La probabilité de n'obtenir que des
$$\mathbf{6}$$
 est égale à $\left(\frac{1}{6}\right)^{1000}$

Au tableau on a montré une autre approche avec le modèle probabiliste $\Omega = [1;6]^n$ muni de la probabilité uniforme. $card(\Omega) = 6^n$. On a $A = \{(6,...,6)\}$ donc card(A) = 1 et ainsi $P(A) = \frac{1}{6^n}$

2) On note B: "obtenir au moins un \mathfrak{G} ", on a alors : \overline{B} : "obtenir aucun \mathfrak{G} " ou $\overline{B} = \bigcap_{k=1}^{n} \overline{S_k}$, et comme les lancers sont indépendants il vient : $P(\overline{B}) = \left(\frac{5}{6}\right)^n$ et ainsi $P(B) = 1 - \left(\frac{5}{6}\right)^n$

La probabilité d'obtenir au moins un
$$\bullet$$
 est égale à $1-\left(\frac{5}{6}\right)^{1000}$

3) On note C: "obtenir exactement un $\mathbf{6}$ "

$$C = (S_1 \cap \overline{S_2} \cap \dots \cap \overline{S_n}) \cup \dots \cup (\overline{S_1} \cap \dots \cap \overline{S_{n-1}} \cap S_n)$$

(On fait une partition de C en fonction de la place du 3)

L'événement C est la réunion de n événements 2 à 2 disjoints et tous de même probabilité $\frac{1}{6} \left(\frac{5}{6}\right)^{n-1}$

donc
$$P(C) = n\frac{1}{6} \left(\frac{5}{6}\right)^{n-1}$$

La probabilité d'obtenir exactement un
$$\bullet$$
 est égale à $1000 \times \frac{1}{6} \left(\frac{5}{6}\right)^{999}$ ou encore $200 \left(\frac{5}{6}\right)^{1000}$

Remarque: On est ici dans une situation ultra-classique: un schéma de Bernoulli.

Si on note X le nombre de \bullet obtenu, X suit la loi binomiale de paramètre $\left(1000, \frac{1}{6}\right)$.

$$P(C) = P(X = 1) = {n \choose 1} \frac{1}{6} \left(1 - \frac{1}{6}\right)^{n-1}$$

- **Ex 2 :** On note pour $k \in [[1, 8]]$, N_k : "la dernière boule est noire".
 - 1) Au premier tirage l'urne contient une boule noire sur un total de 8 boules donc

$$P(N_1) = \frac{3}{8}$$

2) On applique la formule des probabilités totales avec le système complet : $(N_1, \overline{N_1})$

$$P(N_2) = P(N_1)P_{N_1}(N_2) + P(\overline{N_1})P_{\overline{N_1}}(N_2) \qquad \text{(faire l'arbre pondéré au brouillon)}$$
$$= \frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}$$

$$P(N_2) = \frac{3}{8}$$

3) Exercice classique avec un résultat surprenant la première fois. Modèle classique.

On numérote les boules, 1, 2, 3 représentent les boules noires, 4, 5, 6, 7, 8 les boules blanches.

L'univers Ω : l'ensemble des permutations $\{1, 2, 3, 4, 5, 6, 7, 8\}$. (card $(\Omega) = 8!$)

On munit Ω de la probabilité uniforme. (On calculera les probabilités avec la formule $P(A) = \frac{card(A)}{card(\Omega)}$)

 N_8 est l'ensemble des permutations $(x_1,...x_8)$ qui finissent par un 1,2 ou 3.

le
$$\operatorname{card}(N_8)$$
 est égal à

$$\operatorname{donc} \quad P(N_8) = \frac{\operatorname{card}(N_8)}{\operatorname{card}(\Omega)} = \frac{3 \times 7!}{8!}$$

$$P(N_8) = \frac{3}{8}$$

Remarque: Pour des raisons de symétrie les 8 boules ont la même probabilité d'être tirée au dernier tirage.

Les 8 boules ont la même probabilité d'apparaître en dernier, donc chacune avec une probabilité de $\frac{1}{8}$.

Imaginez-vous observer l'apparition de cette dernière boule : Il n'y a aucune raison pour qu'une boule apparaisse (en moyenne) plus souvent qu'une autre.

Un autre modèle.

On choisit ici le modèle :

L'univers Ω : l'ensemble des anagrammes du mot NNNBBBBB. $(\operatorname{card}(\Omega) = {8 \choose 2})$

On munit Ω de la probabilité uniforme. (On calculera les probabilités avec la formule $P(A) = \frac{card(A)}{card(\Omega)}$)

On note N_8 : "la dernière boule est noire".

 N_8 est l'ensemble des anagrammes qui finissent par un N.

le card (N_8) est égal au nombre d'anagrammes du mot NNBBBBB donc card $(N_8) = \binom{\ell}{2}$

donc
$$P(N_8) = \frac{\operatorname{card}(N_8)}{\operatorname{card}(\Omega)} = \frac{\binom{7}{2}}{\binom{8}{3}} = \frac{\binom{7}{2}}{\frac{8}{3}\binom{7}{2}}$$

$$P(N_8) = \frac{3}{8}$$

- Ex 3: (non corrigé)
- Ex 4: (non corrigé)
- Ex 5: (non corrigé)
- Ex 6: A chaque question l'expérience change, nous devons redéfinir des événements adaptés à la situation.
 - 1) On note : C : " Le dé tiré est classique", S : " On obtient un six" . La formule des probabilités totales avec le système complet $\{C; \overline{C}\}$ donne

$$P(S) = P(C)P_C(S) + P(\overline{C})P_{\overline{C}}(S)$$
$$= \frac{3}{10} \times \frac{1}{6} + \frac{7}{10} \times \frac{1}{3}$$

la probabilité d'obtenir un six est égale à $\frac{17}{60}$

2) On note : C : " Le dé tiré est classique",

 S_1 : " On obtient un six au premier lancer" et S_2 : " On obtient un six au deuxième lancer". La formule des probabilités totales avec le système complet $\{C; \overline{C}\}$ donne

$$P(S_1 \cap S_2) = P(C)P_C(S_1 \cap S_2) + P(\overline{C})P_{\overline{C}}(S_1 \cap S_2)$$

et comme une fois les dés choisis les lancers sont indépendants :

$$P(S_1 \cap S_2) = P(C)P_C(S_1)P_C(S_2) + P(\overline{C})P_{\overline{C}}(S_1)P_{\overline{C}}(S_2)$$

ce qui donne :

$$P(S_1 \cap S_2) = \frac{3}{10} \times \frac{1}{6} \times \frac{1}{6} + \frac{7}{10} \times \frac{1}{3} \times \frac{1}{3}$$

la probabilité d'obtenir un double-six est égale à $\frac{31}{360}$

Remarque faite au tableau:

- Les événements S_1 et S_2 sont indépendants pour les probabilités conditionnelles P_C et $P_{\overline{C}}$.
- En revanche S_1 et S_2 ne sont pas indépendants pour la probabilité P.
- 3) On note : A : "les deux dés ne sont pas classiques", B : "les deux dés sont différents", C : "les deux dés tirés sont classiques" et S : "on obtient un double-six".

La formule des probabilités totales avec le système complet $\{A, B, C\}$ donne

$$P(S) = P(A)P_A(S) + P(B)P_B(S) + P(C)P_C(S)$$

Le tirage des deux dés est la situation classique du tirage simultané de deux objets dans un urne de 10 dés, on obtient :

$$P(A) = \frac{\binom{7}{2}}{\binom{10}{2}} = \frac{7}{15} \qquad P(B) = \frac{3 \times 7}{\binom{10}{2}} = \frac{7}{15} \qquad P(C) = \frac{\binom{3}{2}}{\binom{10}{2}} = \frac{1}{15}$$

 \bullet Si A est réalisée l'expérience consiste au lancer de deux dés non classiques donc

$$P_A(S) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

• Si B est réalisée l'expérience consiste au lancer d'un dé non classique et un dé classique donc

$$P_B(S) = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18}$$

• Si C est réalisée l'expérience consiste au lancer de deux dés non classiques donc

$$P_C(S) = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$$

il vient:

$$P(S) = \frac{7}{15} \times \frac{1}{9} + \frac{7}{15} \times \frac{1}{18} + \frac{1}{15} \times \frac{1}{36}$$

la probabilité d'obtenir un double-six vaut : $\frac{43}{540}$

4) On note : S_k : " On obtient un six avec le dé numéro k" (les trois premiers sont classiques) Les lancers sont indépendants donc :

$$P(S_1 \cap S_2 \cap \cdots \cap S_{10}) = P(S_1)P(S_2) \cdots P(S_{10})$$

la probabilité de n'obtenir que des six vaut : $\left(\frac{1}{6}\right)^3 \times \left(\frac{1}{3}\right)^7 = \frac{1}{472392}$

Ex 7: (non corrigé)

Ex 8: (non corrigé)

Modèles classiques.

1) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6\}$, muni de la probabilité uniforme. (card(Ω) = 6) On note A: "obtenir un multiple de 3", autrement dit $A = \{3, 6\}$ et card(A) = 2 La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{2}{6}$

la probabilité d'obtenir un multiple de 3 est égale à : $\frac{1}{3}$

2) Modèle : On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6\}^2$, muni de la probabilité uniforme. (card(Ω) = 36) On note A : "obtenir au moins un 6", on a alors $\overline{A} = \{1, 2, 3, 4, 5\}^2$ et card(\overline{A}) = 25 La probabilité est uniforme donc : $\mathbb{P}(\overline{A}) = \frac{\operatorname{card}(\overline{A})}{\operatorname{card}(\Omega)}$

la probabilité d'obtenir au moins un 6 est égale à : $1 - \frac{25}{36} = \frac{11}{36}$

3) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6\}^4$, muni de la probabilité uniforme. (card(Ω) = 6^4) On note A : "la somme des numéros obtenus soit égale à 5",

autrement dit $A = \{(1, 1, 1, 2), \dots, (2, 1, 1, 1)\}$ et $\operatorname{card}(A) = 4$

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{4}{6^4}$

la probabilité que la somme des numéros obtenus soit égale à 5 vaut : $\frac{1}{324}$

4) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6\}^n$, muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 6^n)$ On note A : "Tous les dés donnent le même résultat",

autrement dit $A = \{(1, ..., 1), ..., (6, ..., 6)\}$ et card(A) = 6

La probabilité est uniforme donc : $\mathbb{P}(A)=\frac{\mathrm{card}(A)}{\mathrm{card}(\Omega)}$ d'où $\mathbb{P}(A)=\frac{1}{6^{n-1}}$

la probabilité que tous les dés donnent le même résultat est égale à : $\frac{1}{6^{n-1}}$

5) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6\}^3$, muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 6^3)$ On note A: "on obtient "421",

autrement dit A est l'ensemble des permutations de $\{1,2,4\}$ et $\operatorname{card}(A)=3!=6$

La probabilité est uniforme donc : $\mathbb{P}(A)=\frac{\mathrm{card}(A)}{\mathrm{card}(\Omega)}$ d'où $\mathbb{P}(A)=\frac{6}{6^3}$

la probabilité que tous les dés donnent le même résultat est égale à b : $\frac{1}{36}$

6) Modèle : On prend pour univers : $\Omega = \{0,1\}^4$, muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 2^4 = 16)$

50

 $X_1 = X_2$ est l'événement : "obtenir autant de piles que de faces" ,

autrement dit $(X_1 = X_2) = \{(1, 1, 0, 0), \dots, (0, 0, 1, 1)\}$ et $\operatorname{card}(X_1 = X_2) = 6$

 $\text{La probabilit\'e est uniforme donc}: \mathbb{P}(X_1=X_2) = \frac{\operatorname{card}(X_1=X_2)}{\operatorname{card}(\Omega)} \text{ d'où } \mathbb{P}(X_1=X_2) = \frac{6}{16}$

$$\boxed{\mathbb{P}(X_1 = X_2) = \frac{3}{8}}$$

7) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, muni de \mathbb{P} : uniforme. $(\operatorname{card}(\Omega) = 10)$ On note A : "obtenir un nombre premier", autrement dit $A = \{2, 3, 5, 7\}$ et $\operatorname{card}(A) = 4$

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{4}{10}$

la probabilité d'obtenir un nombre premier est égale à : $\frac{2}{5}$

4

8) **Modèle :** On prend pour univers : Ω l'ensemble des combinaisons de deux éléments de [1;100], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = \binom{100}{2})$

On note A: "obtenir deux nombres consécutifs", autrement dit $A = \{\{1,2\},\ldots,\{99,100\}\}$ et $\operatorname{card}(A) = 99$

La probabilité est uniforme donc :
$$\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$
 d'où $\mathbb{P}(A) = \frac{99}{\binom{100}{2}}$

la probabilité d'obtenir deux nombres consécutifs est égale à : $\frac{1}{50}$

9) On a nécessairement : $1 \le p \le 100$, (on suppose donc p est entre 1 et 100).

Modèle : On prend pour univers : Ω l'ensemble des combinaisons de p éléments de [1;100], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = \binom{100}{p})$

On note A: "obtenir p nombres consécutifs", autrement dit $A = \{\{1, 2, ..., p\}, ..., \{100 - p + 1, ..., 99, 100\}\}$ et card(A) = 100 - p + 1

La probabilité est uniforme donc :
$$\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$
 d'où $\mathbb{P}(A) = \frac{101 - p}{\binom{100}{p}}$

la probabilité d'obtenir p nombres consécutifs est égale à : $\frac{101 - p}{\binom{100}{p}}$

10) (Attention j'ai modifié l'énoncé, j'ai enlevé "consécutifs")

Modèle : On prend pour univers : Ω l'ensemble des arrangements de deux éléments de [1; 100], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 100 \times 99)$

On note A: "obtenir deux nombres dans l'ordre croissant", (nécessairement strictement croissant)

autrement dit
$$A = \{(1, 2), \dots, (99, 100)\}$$
 et $card(A) = \binom{100}{2}$.

(Autant de listes strictement croissantes que de parties)

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{\binom{100}{2}}{100 \times 99}$

la probabilité d'obtenir deux nombres dans l'ordre croissant est égale à : $\frac{1}{2}$

11) **Modèle :** On prend pour univers : Ω l'ensemble des listes de p éléments de [1;100], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 100^p)$

On note A: "obtenir p nombres consécutifs dans l'ordre croissant",

autrement dit :
$$A = \{(1, 2, ..., p), ..., (100 - p + 1, ..., 99, 100)\}$$
 et card $(A) = 101 - p$.

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{101 - p}{100^p}$

la probabilité d'obtenir p nombres consécutifs dans l'ordre croissant est égale à : $\frac{101-p}{100^p}$

12) **Modèle :** On prend pour univers : $\Omega = \{1, 2, 3\}$ (1 : rouge , 2 : verte et 3 : noire).

Et on munit cet univers de la probabilité définie par :

ω	1	2	3
$\mathbb{P}(\{\omega\})$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$

la probabilité d'obtenir une boule rouge est égale à : $\frac{1}{3}$

13) **Modèle :** On prend pour univers : Ω l'ensemble des combinaisons de trois éléments de [1; 10], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = \binom{10}{3})$

On note A: "obtenir trois nombres consécutifs",

autrement dit
$$A = \{\{1, 2, 3\}, \dots, \{8, 9, 10\}\}\$$
 et card $(A) = 8$

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{8}{\binom{10}{3}}$

la probabilité d'obtenir trois nombres consécutifs est égale à : $\frac{1}{15}$

14) **Modèle :** On prend pour univers : Ω l'ensemble des arrangements de trois éléments de [1;10], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 10 \times 9 \times 8)$

On note $A = (X_1 = 1) \cup (X_{10} = 10)$,

autrement dit $A = \{(1, 2, 10), \dots, (1, 9, 10)\}$ et card(A) = 8

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{8}{10 \times 9 \times 8}$

$$P((X_1 = 1) \cup (X_{10} = 10)) = \frac{1}{90}$$

15) **Modèle :** On prend pour univers : Ω l'ensemble des permutations de [1; 10], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 10!)$

On note A: "obtenir les nombres dans l'ordre croissant",

autrement dit $A = \{(1, 2, ..., 10)\}$ et card(A) = 1

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$

la probabilité d'obtenir les nombres dans l'ordre croissant est égale à : $\frac{1}{10!}$

16) **Modèle :** On prend pour univers : Ω l'ensemble des listes de trois éléments de [1; 10], muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = 10^3)$

On note A : "la première valeur est 1 et la dernière 10" ,

autrement dit $A = \{(1, 1, 10), \dots, (1, 10, 10)\}$ et card(A) = 10

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{10}{10^3}$

la probabilité que la première valeur soit 1 et la dernière 10, est égale à : $\frac{1}{100}$

17) **Modèle :** On prend pour univers : Ω l'ensemble des anagrammes du mot "RRVVVVVVV", muni de la probabilité uniforme. $(\operatorname{card}(\Omega) = \binom{10}{2})$

On note A : "On obtient les deux boules rouges consécutivement" ,

autrement dit $A = \{ \text{"RRVVVVVVV"}, \dots, \text{"VVVVVVVRR"} \}$ et $\operatorname{card}(A) = 9$

La probabilité est uniforme donc : $\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$ d'où $\mathbb{P}(A) = \frac{9}{\binom{10}{2}}$

la probabilité que la première valeur soit 1 et la dernière 10, est égale à : $\frac{1}{5}$

- 18)
- 19)
- 20)