Feuille Cours 4 : Probabilité sur un univers quelconque.

Ex 1 : Soit $(A_n)_{i\in\mathbb{N}}$ une suite d'événements d'un univers Ω et N un entier naturel fixé. Classer (du plus petit au plus grand au sens de l'inclusion) les cinq événements suivants :

$$A_N$$

$$\bigcup_{n=0}^N A_n \qquad \bigcup_{n=0}^{+\infty} A_n \qquad \bigcap_{n=0}^N A_n \qquad \bigcap_{n=0}^{+\infty} A_n$$

Ex 2 : Donner des exemples de systèmes complets d'événements dans les cas suivants :

$$\Omega_1 = \llbracket 1; 6 \rrbracket \qquad \qquad \Omega_2 = \llbracket 0; 1 \rrbracket \qquad \qquad \Omega_3 = \mathbb{R} \qquad \qquad \Omega_4 = \mathbb{R}^2 \qquad \qquad \Omega_5 = \llbracket 1, 6 \rrbracket^{\mathbb{N}}$$

Ex 3: Soient A et B deux événements d'un même espace probabilisable (Ω, \mathscr{T}) . Justifier que les trois événements $A, \overline{A} \cap B$ et $\overline{A} \cap \overline{B}$ est un système complet d'événements.

Ex 4 : On lance indéfiniment un dé, et on note : S_k : "le k-ème lancer donne \mathfrak{G} " C_k : "le k-ème lancer donne \mathfrak{G} ". Ecrire, à l'aide des événements S_k et C_k , les événements suivants.

- 1) Pour $n \in \mathbb{N}^*$, $A_n :$ "Le \bullet n'est pas apparu au cours des n premiers lancers ".
- 2) Pour $n \in \mathbb{N}^*$, U_n : "Le **6** est apparu une et une seule fois au cours des n premiers lancers".
- 3) Pour $n \in \mathbb{N}^*$, V_n : "Le **6** est apparu exactement deux fois au cours des n premiers lancers".
- 4) E_1 : " Le **6** n'apparait jamais "
- 5) E_2 : " On obtient au moins une fois **6**"
- 6) E_3 : "On obtient au moins une fois \bullet et au moins une fois \bullet ".
- 7) E_4 : " On obtient que des $\mathbf{6}$ ".
- 8) E_5 : " On obtient un nombre fini de $\mathbf{6}$ ".
- 9) E_6 : " A partir d'un certain tirage on obtient que des \bullet ".

Ex 5 : On considère une expérience aléatoire consistant à tirer indéfiniment des réels X_1, X_2, \ldots dans \mathbb{R}^+ . On définit les événements simples suivants :

$$A_k = \{X_k \in [0,1]\}, \quad B_k = \{X_k \in]1,2]\}, \quad C_k = \{X_k > 2\}.$$

Ecrire en fonction des A_k, B_k et C_k les événements suivants :

- 1) Pour $n \in \mathbb{N}^*$, $E_1(n)$: "les n premiers tirages sont tous dans [0,1]".
- 2) Pour $n \in \mathbb{N}^*$, $E_2(n)$: "exactement un des n premiers tirages est dans [0,2]".
- 3) E_3 : "tous les tirages sont strictement supérieurs à 2".
- 4) E_4 : "au moins un tirage est dans [0,1]".
- 5) E_5 : "à partir d'un certain rang, tous les tirages sont dans (1,2]".
- 6) E_6 : "il y a un nombre fini de tirages dans [0,1]".]
- 7) E_7 : "il y a un nombre infini de tirages strictement supérieurs à 2".
- **Ex 6:** 1) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements vérifiant : $\lim_{n\to+\infty} \left(P\left(\bigcap_{k=0}^n A_k\right)\right) = 0$, Montrer que : $P\left(\bigcap_{k=0}^{+\infty} A_k\right) = 0$.
 - 2) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements vérifiant : $\lim_{n\to+\infty}\left(P\left(\bigcup_{k=0}^nA_k\right)\right)=1$, Montrer que : $P\left(\bigcup_{n=0}^{+\infty}A_n\right)=1$.
 - 3) Application : On lance indéfiniment un dé. Quelle est la probabilité de n'avoir jamais la face **6**?

Ex 7: (Avec la définition d'une probabilité sur un univers fini)

1) Démontrer que :

si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements deux à deux incompatibles alors la série $\sum_{n\geq 1} P(A_n)$ converge.

- 2) En déduire que si $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements deux à deux incompatibles alors $\lim_{n\to+\infty} P(A_n) = 0$.
- Ex 8: 1) On lance indéfiniment une pièce équilibrée et on note X le rang d'apparition du premier pile. Quelle est la probabilité que X soit un nombre pair?

Indication : C'est une situation classique modélisée par la donnée de la suite (F_n) définie par :

pour $n \in \mathbb{N}$, F_n : "le nième lancer donne Face".

Les événements de (F_n) sont mutuellement indépendants.

- 2) Reprendre la question précédente avec une pièce truquée donnant pile avec une probabilité $p \in]0,1[$.
- Ex 9: Deux joueurs lancent tour à tour un dé. Le premier qui tire un six a gagné et le jeu s'arrête.

Quelle est la probabilité de gagner pour chacun des joueurs? Que personne ne gagne?

Indication : On se ramène à la situation classique modélisée par la donnée de la suite (S_n) définie par :

pour $n \in \mathbb{N}$, S_n : "le nième lancer donne un six".

On fait comme si le jeu ne s'arrêtait pas pour avoir la propriété : Les événements de (S_n) sont mutuellement indépendants.

Ex 10 : 1) Soit A un événement tel que P(A) = 0 :

 $P(A \cap B) = 0$ et $P(A \cup B) = P(B)$ montrer que pour tout événement B,

2) Soit A un événement tel que P(A) = 1 :

 $P(A \cap B) = P(B)$ et $P(A \cup B) = 1$. montrer que pour tout événement B,