Fiche de révision – Equations différentielles

1. Equations diff. homogènes

1.1. Eq. diff. linéaire d'ordre 1 homogène.

$$(E_0): y' + a(t)y = 0 \text{ sur } I \text{ avec } a \in C^0(I)$$

On note A une primitive de a sur I.

• Théorème :

$$S_{(E_0)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto ke^{-A(t)} \end{array} \middle| k \in \mathbb{R} \right\}$$

- $S_{(E_0)}$ est un espace vectoriel de dimension 1.
- Remarques :
 - \bullet si f_0 est une solution non nulle de (E_0)

alors
$$S_{(E_0)} = \text{Vect}(f_0)$$

 $\mathbf{2}$ si f est une solution de (E_0) s'annulant sur I

alors f est la fonction nulle sur I.

1.2. Eq. diff. lin. d'ordre 2 homogène à coeff. const.

$$(E_0): ay'' + by' + cy = 0$$
 sur I avec a, b, c des réels tels que $a \neq 0$.

On note $E_c: ax^2 + bx + c = 0$ (équation caractéristique)

• Théorème :

lacktriangle Si E_c a deux racines réelles distinctes r_1 et r_2 , alors

$$S_{(E_0)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto k_1 e^{r_1 t} + k_2 e^{r_2 t} \end{array} \middle| \ (k_1, k_2) \in \mathbb{R}^2 \right. \right\}$$

 $\mathbf{2}$ si E_c a une racine réelle double r_0 , alors

$$S_{(E_0)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto k_1 e^{r_0 t} + k_2 t e^{r_0 t} \end{array} \middle| \ (k_1, k_2) \in \mathbb{R}^2 \right. \right\}$$

 \bullet si E_c a deux racines $\alpha + i\omega$ et $\overline{\alpha + i\omega}$, alors

$$S_{(E_0)} = \begin{cases} I \to \mathbb{R} \\ t \mapsto e^{\alpha t} (k_1 \cos(\omega t) + k_2 \sin(\omega t)) \end{cases} \left| (k_1, k_2) \in \mathbb{R}^2 \right\}$$

- $S_{(E_0)}$ est un espace vectoriel de dimension 2.
- Remarque

dans 3 on peut aussi écrire les solutions :

$$t \mapsto e^{\alpha t} A \cos(\omega t + \varphi)$$

1.3. Exemples.

 $\bullet \ y' + ay = 0$

Les solutions sont les fonctions $t \longmapsto ke^{-at}$.

(avec $k \in \mathbb{R}$)

 $\bullet \ y'' + \omega^2 y = 0$

Les solutions : $t \mapsto a\cos(\omega t) + b\sin(\omega t)$.

(avec
$$(a,b) \in \mathbb{R}^2$$
)

2. Equations avec second membre

2.1. (E) :
$$y' + a(t)y = \varphi(t)$$
 sur I

On note g une solution particulière de (E).

•
$$S_{(E)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto h(t) + g(t) \end{array} \middle| h \in S_{(E_0)} \right\}$$

•
$$S_{(E)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto ke^{-A(t)} + g(t) \end{array} \middle| k \in \mathbb{R} \right\}$$

2.2. (E_0) : $ay'' + by' + cy = \varphi(t) \mathbf{sur} I$

avec a, b, c des réels tels que $a \neq 0$.

On note g une solution particulière de (E).

•
$$S_{(E)} = \left\{ \begin{array}{l} I \to \mathbb{R} \\ t \mapsto h(t) + g(t) \end{array} \middle| h \in S_{(E_0)} \right\}$$

2.3. Avec un second membre constant

- Si $a \in \mathbb{R}^*$, $t \longmapsto \frac{b}{a}$ est une solution de y' + ay = b
- Si $c \in \mathbb{R}^*$, $t \longmapsto \frac{d}{c}$ est une solution de ay'' + by' + cy = d

3. Principe de superposition

- Si g_1 est solution de $y' + a(t)y = \varphi_1(t)$ et g_2 est solution de $y' + a(t)y = \varphi_2(t)$ alors $\alpha g_1 + \beta g_2$ est solution de $y' + a(t)y = \alpha \varphi_1(t) + \beta \varphi_2(t)$
- Si g_1 est solution de $ay'' + by' + cy = \varphi_1(t)$ et g_2 est solution de $ay'' + by' + cy = \varphi_2(t)$ alors $\alpha g_1 + \beta g_2$ est solution de $ay'' + by' + cy = \alpha \varphi_1(t) + \beta \varphi_2(t)$

4. Méthode de variations de la constante

$$(E): y' + a(t)y = \varphi(t)$$

 $(E): y' + a(t)y = \varphi(t)$ avec a et φ deux fonctions continues sur I.

Théorème : (E) possède au moins une solution sur I.

Méthode de variation de la constante :

En posant $f_0(t) = \exp(-A(t))$,

on cherche une solution de (E) sous la forme $t \mapsto k(t) \times f_0(t)$

5. Condition initiale

• $(E): y' + a(t)y = \varphi(t) \text{ sur } I.$

Théorème : Pour $t_0 \in I$ et $y_0 \in \mathbb{R}$,

il existe une unique solution f de (E) vérifiant :

$$f(t_0) = y_0$$

• (E): $ay'' + by' + cy = \varphi(t)$

Théorème : Pour $t_0 \in I$ et $(y_0, y_1) \in \mathbb{R}^2$,

il existe un unique solution f de (E) vérifiant :

$$f(t_0) = y_0$$
 et $f'(t_0) = y_1$