Feuille Act_12 : Equations différentielles linéaires.

Ex 1. Application directe du cours.

- 1) Résoudre les équations différentielles suivantes :
 - a. y' + 2y = 0 sur \mathbb{R} .
 - b. $y' + \frac{1}{t}y = 0 \text{ sur }]0; +\infty[.$
- 2) Résoudre sur \mathbb{R} les équations différentielles suivantes.
 - a. y'' + 4y' + 13y = 0.
 - b. y'' y = 0
- 3) a. Résoudre sur \mathbb{R} l'équation différentielle : y' + 2y = 3
 - b. Résoudre sur \mathbb{R}_+^* l'équation différentielle : $y' + \frac{1}{t}y = 2$
- 4) a. Résoudre sur \mathbb{R} l'équation différentielle : y'' + y = 3
 - b. Résoudre sur \mathbb{R}_+^* l'équation différentielle : y''-y=t
- 5) Résoudre sur \mathbb{R} le problème différentiel suivant : 2y' + 2y = 3 et y(1) = 2.
- 6) Résoudre sur \mathbb{R} le problème différentiel suivant : y'' 4y = 0 , y(0) = 1 et y'(0) = 0 .
- 7) Résoudre sur \mathbb{R} l'équation différentielle : (E) : $y'-y=4+2\cos(t)-e^t$
- **Ex 2.** On considère l'équation (E) : $y'' 4y = e^{2x}$
 - 1) Soit P un polynôme, on note $g: x \longmapsto P(x)e^{2x}$.
 - a. On suppose que g est solution, montrer que P est de degré 1.
 - b. En déduire une solution de (E)
 - 2) Donner l'ensemble des solutions de (E).
- **Ex 3.** On considère l'équation (E) : $y'' + y = \cos(t)$
 - 1) Soit $(a, b) \in \mathbb{R}^2$, on note $g: x \longmapsto a t \cos(t) + b t \sin(t)$. Déterminer un couple (a, b) pour lequel g est une solution de (E)
 - 2) Donner l'ensemble des solutions de (E).
- **Ex 4.** On considère l'équation (E) : $y' + 5y = x^2 x + 3$
 - 1) Déterminer une solution polynomiale de (E)
 - 2) Donner l'ensemble des solutions de (E).
- **Ex 5.** Résoudre sur \mathbb{R} l'équation différentielle : (E) : $y'-y=4+2\cos(t)-e^t$
- **Ex 6.** Résoudre sur \mathbb{R} l'équation différentielle : (E) : $y'' + 3y' 2y = \sin(t) + t + e^t$.
- **Ex 7.** 1) Résoudre sur \mathbb{R} , 2y' + 2y = 3 et y(1) = 2.
 - 2) Résoudre sur \mathbb{R} , y'' + y = 1, y(0) = 2 et y'(0) = 2.
- Ex 8. Ecrire l'ensemble des solutions des équations différentielles suivantes comme des espaces vectoriels engendrés.
 - 1) $I = \mathbb{R}$ et y' = -ty.
 - 2) $I = \mathbb{R}$ et $y' + 4x^2y = 0$.
 - 3) $I = \mathbb{R}_+^*$ et ty' = y
- **Ex 9.** 1) Résoudre sur $]0; +\infty[$, l'équation différentielle : $(E): (1+x^2)y'(x) + 2xy(x) = \frac{1}{x^2}$
 - 2) Résoudre sur $\mathbb R$ l'équation différentielle : $(E): \quad y'=x+2xy$
 - 3) Résoudre sur $]0; +\infty[(E): y' \frac{1}{t}y = te^t]$
 - 4) Résoudre sur $]0; +\infty[(E): x^3y'(x) x^2y(x) = 1]$

Ex 10. On note $E = C^2(\mathbb{R})$,

Dans les cas suivants montrer que F est un sous-espace vectoriel de E et déterminer une base de F.

- 1) $F = \{ f \in E \mid f'' + f' + \frac{1}{4}f = 0 \}.$
- 2) $F = \{ f \in E \mid f'' + 3f' + f = 0 \}.$
- 3) $F = \{ f \in E \mid f'' + 4f' + 5f = 0 \}.$

Ex 11. (Agro-veto MCR 2023)

Soit a une fonction continue sur un intervalle I de \mathbb{R} . On considère l'équation différentielle suivante :

$$(E_1): y'(t) = a(t)y(t)$$

- 1) Donner, sans justification, les solutions de l'équation différentielle (E_1) .
- 2) En déduire que, si f est une solution de (E_1) s'annulant sur I, alors f est la fonction nulle sur l'intervalle I.

Soit b une fonction continue sur \mathbb{R}, C une constante réelle et g une solution sur un intervalle I de l'équation différentielle :

$$(E_2): y'(t) = b(y(t))(y(t) - C).$$

3) Montrer que g - C est solution sur I de :

$$(E_3): y'(t) = b(g(t)) y(t)$$

4) En déduire que, s'il existe $t_0 \in I$ tel que $g(t_0) = C$, alors g est constante sur I.

Ex 12. (Début du sujet ENS 2024) Première partie : Équation de compétition entre deux populations On considère l'équation :

$$u'(t) = u(t) (r_1 - u(t))$$

avec $r_1 > 0$ et une donnée initiale strictement positive u(0) > 0.

On admettra qu'il existe une solution u(t) pour tout $t \ge 0$, de classe C^1 .

(très mal dit : il existe sur $[0; +\infty[$ une solution u de classe C^1)

- 1) Trouver l'équation satisfaite par la fonction p := 1/u et résoudre cette équation.
- 2) En déduire que

$$u(t) = \frac{u(0)r_1}{r_1e^{-r_1t} + u(0)(1 - e^{-r_1t})}$$

3) En déduire la limite de u quand $t \to +\infty$.

Ex 13. 1) Résoudre sur $[0; +\infty[$, l'équation différentielle :

$$(E): y' - \left(2t - \frac{1}{t}\right)y = 1$$

- 2) Déterminer la solution de (E) sur $]0; +\infty[$ vérifiant : $y(1) = -\frac{1}{2}$.
- 3) Déterminer la solution de (E) sur $]0; +\infty[$ vérifiant : $y(1) = \frac{1}{2}$.
- 4) Résoudre sur $[0; +\infty[$, l'équation différentielle :

$$(E_2): y' - \left(2t - \frac{1}{t}\right)y = 1 + e^{(t^2)}$$

Ex 14. On note F l'ensemble des fonctions deux fois dérivables sur \mathbb{R}_+^* et vérifiant :

$$\forall x \in \mathbb{R}_+^*, \quad xy'' + 2(x+1)y' + (x+2)y = 0$$

- 1) Montrer que F est un sous espace vectoriel de $D_2(\mathbb{R}_+^*)$.
- 2) Soit y une fonction deux fois dérivable sur \mathbb{R}_+^* . On note, pour tout x > 0, z(x) = xy(x). Montrer que y est solution de (E) sur \mathbb{R}_+^* si, et seulement si, z est solution sur \mathbb{R}_+^* d'une équation différentielle (E') à coefficients constants que l'on déterminera.
- 3) En déduire que F est de dimension finie et déterminer une base de F.