Correction de la feuille Act_12 : Equations différentielles linéaires.

Ex 1. Application directe du cours.

1) a. $(E_0): y' + 2y = 0$ est une équation différentielle linéaire à coefficients constants d'ordre 1 et homogène, donc

$$S_{(E_0)} = \left\{ \begin{array}{ccc} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto ke^{-2t} \end{array} \middle| \quad k \in \mathbb{R} \quad \right\}$$

b. $(E_0): y' + \frac{1}{t}y = 0$ est une équation différentielle linéaire d'ordre 1 et homogène,

La fonction $a:t\longmapsto \frac{1}{t}$ est continue sur $]0;+\infty[$ et $A:t\longmapsto \ln(t)$ est une primitive de a sur $]0;+\infty[$,

de plus $\exp(-A(t)) = \exp(-\ln(t)) = \frac{1}{t}$ donc

$$S_{(E_0)} = \left\{ \begin{array}{ccc}]0; +\infty[& \longrightarrow & \mathbb{R} \\ & t & \longmapsto \frac{k}{t} \end{array} \middle| \quad k \in \mathbb{R} \quad \right\}$$

2) a. $(E_0): y'' + 4y' + 13y = 0$ est une équation différentielle linéaire à coefficients constants d'ordre 2 et homogène, le polynôme caractéristique $P = X^2 + 4X + 13$ a pour racines -2 + 3i et $\overline{-2 + 3i}$ donc

$$S_{(E_0)} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & e^{-2t} \left(k_1 \cos(3t) + k_2 \sin(3t) \right) \end{array} \middle| \quad (k_1, k_2) \in \mathbb{R}^2 \quad \right\}$$

b. $(E_0): y'' - y = 0$ est une équation différentielle linéaire à coefficients constants d'ordre 2 et homogène, Le polynôme caractéristique $P = X^2 - 1$ a pour racines -1 et 1 donc

$$S_{(E_0)} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & k_1 e^{-t} + k_2 e^t \end{array} \middle| \quad (k_1, k_2) \in \mathbb{R}^2 \quad \right\}$$

3) a. $(E_0): y'+2y=0$ est une équation différentielle linéaire à coefficients constants d'ordre 1 et homogène, donc $S_{(E_0)}=\left\{\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ke^{-2t} \end{array} \middle| \quad k\in\mathbb{R} \end{array}\right\}$

de plus on remarque que $t \longmapsto \frac{3}{2}$ est une solution de (E): y' + 2y = 3 donc

$$S_{(E)} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ke^{-2t} + \frac{3}{2} \end{array} \middle| k \in \mathbb{R} \right\}$$

b. $(E_0): y' + \frac{1}{t}y = 0$ est une équation différentielle linéaire d'ordre 1 et homogène,

 $\text{La fonction } a:t\longmapsto\frac{1}{t}\text{ est continue sur }I=]0;+\infty[\text{ et }A:t\longmapsto\ln(t)\text{ est une primitive de }a\text{ sur }]0;+\infty[,t]$

de plus
$$\exp(-A(t)) = \exp(-\ln(t)) = \frac{1}{t}$$
 donc $S_{(E_0)} = \left\{ \begin{array}{cc}]0; +\infty[\longrightarrow \mathbb{R} \\ t \longmapsto \frac{k}{t} \end{array} \middle| \quad k \in \mathbb{R} \end{array} \right\}$

Méthode de variations de la constante.

On note $f_0: t \longmapsto \frac{1}{t}$ (attention ici on a $a = f_0$, cela peut vous embrouiller)

Soit k une fonction dérivable sur I, on note $g: t \longmapsto k(t) f_0(t)$

$$g \in S_{(E)} \iff g' + ag = 2 \qquad (sur I)$$

$$\iff k'f_0 + kf'_0 + akf_0 = 2$$

$$\iff k'f_0 = 2$$

$$\iff \forall t \in I, \ k'(t) = 2t$$

En prenant (par exemple) $k: t \mapsto t^2$ on obtient $g: t \mapsto t^2 f_0(t) = t$

La fonction $t \mapsto t$ est une solution de $(E): y' + \frac{1}{t}y = 2$

En conclusion:

$$S_{(E)} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & \frac{k}{t} + t \end{array} \middle| \quad k \in \mathbb{R} \quad \right\}$$

4) a. A. Soit P un polynôme, on note $g: x \longmapsto P(x)e^{2x}$ et on suppose que g solution de (E), donc $\forall x \in \mathbb{R}, \quad g''(x) - 4g(x) = e^{2x}$ or $\forall x \in \mathbb{R}, \quad g'(x) = (P'(x) + 2P(x))e^{2x}, \quad g''(x) = \dots = (P''(x) + 4P'(x) + 4P(x))e^{2x}$ or $g''(x) - 4g(x) = (P''(x) + 4P'(x) + 4P(x))e^{2x} - 4P(x)e^{2x} = (P''(x) + 4P'(x))e^{2x}$ et comme $e^{2x} \neq 0$ il vient P''(x) + 4P'(x) = 1 donc deg(P') = 0 $(car \ P \neq 0 \ et \ deg(P'') < deg(P'))$ et donc deg(P) = 1

si
$$g$$
 est solution de (E) alors P est de degré 1

B. Soit $P = a + bX \in \mathbb{R}_1[X]$, on note $g: x \longmapsto P(x)e^{2x}$ g est deux fois dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad g'(x) = (2a + b + 2bx)e^{2x}, \quad g''(x) = (4a + 4b + 4bx)e^{2x}$$

$$g \in S_{(E)} \iff \forall x \in \mathbb{R}, \quad g''(x) - 4g(x) = e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad (4a + 4b + 4bx)e^{2x} - 4(a + bx)e^{2x} = e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad (4b)e^{2x} = e^{2x}$$

$$\iff 4b = 1 \quad (car e^{2x} \neq 0)$$

On en déduit qu'il suffit de prendre $b = \frac{1}{4}$ pour obtenir une solution

La fonction
$$x \longmapsto \frac{1}{4} x e^x$$
 une solution de (E)

Remarque : On peut rédiger dans un autre contexte (pour remplacer a. et b.) : Soit P un polynôme, on note $g: x \longmapsto P(x)e^{2x}$, g est deux fois dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad g'(x) = (P'(x) + 2P(x))e^{2x}, \quad g''(x) = \dots = (P''(x) + 4P'(x) + 2P(x))e^{2x}$$

$$g \in S_{(E)} \iff \forall x \in \mathbb{R}, \quad g''(x) - 4g(x) = e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad (P''(x) + 4P'(x) + 4P(x))e^{2x} - 4P(x)e^{2x} = e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad (P''(x) + 4P'(x))e^{2x} = e^{2x}$$

$$\iff \forall x \in \mathbb{R}, \quad P''(x) + 4P'(x) = 1 \quad (car \ e^{2x} \neq 0)$$

On remarque qu'il suffit de prendre $P(x) = \frac{1}{4}x$ pour que g soit solution de (E).

La fonction
$$x \longmapsto \frac{1}{4} x e^x$$
 une solution de (E)

b. $P = X^2 - 4$ est le polynôme caractéristique de (E_0) : y'' - 4y = 0. P a deux racines réelles distinctes : 2 et -2 donc l'ensemble des solutions de (E_0) est :

$$S_{(E_0)} = \left\{ \begin{array}{cc} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto k_1 e^{2x} + k_2 e^{-2x} \end{array} \middle| (k_1, k_2) \in \mathbb{R}^2 \right\}$$

et comme d'après 1), $x \mapsto \frac{1}{4} x e^x$ une solution de (E), l'ensemble des solutions de (E) est :

$$S_{(E)} = \left\{ \begin{array}{cc} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto k_1 e^{2x} + k_2 e^{-2x} + \frac{1}{4} x e^x \end{array} \middle| (k_1, k_2) \in \mathbb{R}^2 \right\}$$

- 5) (Rapidement)
 - a. ... $g:t\longmapsto \frac{1}{2}t\sin(t)$ est une solution de (E)
 - b. L'ensemble des solutions de (E) est :

$$S_{(E)} = \left\{ \begin{array}{cc} \mathbb{R} \longrightarrow \mathbb{R} \\ t \longmapsto k_1 \cos(t) + k_2 \sin(t) + \frac{1}{2} t \sin(t) \end{array} \middle| (k_1, k_2) \in \mathbb{R}^2 \right\}$$

- 6) (non corrigé)
- 7) (non corrigé)
- Ex 2. (non corrigé)
- Ex 3. (non corrigé)
- Ex 4. (non corrigé)
- Ex 5. (non corrigé)
- Ex 6. (non corrigé)
- Ex 7. (non corrigé)
- Ex 8. (non corrigé)
- Ex 9. (non corrigé)
- Ex 10. (non corrigé)
- **Ex 11.** 1) En notant A une primitive de la fonction a sur l'intervalle I, (A existe car a est continue sur I) L'ensemble des solutions de (E_1) est

$$S_{(E_1)} = \left\{ \begin{array}{cc} I \longrightarrow \mathbb{R} \\ t \longmapsto c e^{A(t)} \end{array} \right| c \in \mathbb{R}$$

- 2) Soit f une solution de (E_1) s'annulant en $t_0 \in I$,
 - il existe un $c \in \mathbb{R}$ tel que $\forall t \in I$, $f(t) = c e^{A(t)}$ et sachant que $f(t_0) = 0$ il vient $c e^{A(t_0)} = 0$, donc finalement comme $e^{A(t_0)} \neq 0$ on a nécessairement c = 0 ce qui entraine que f est nulle. On a bien montré que :

Si f est une solution de (E_1) qui s'annule sur I alors f est la fonction nulle sur I

3) On note f = g - C, f est dérivable et pour $t \in I$

$$f'(t) = g'(t)$$

$$= b(g(t)) (g(t) - C)$$

$$= b(g(t)) f(t)$$

Autrement dit:

$$g - C$$
 est solution de (E_3) : $y'(t) = b(g(t))y(t)$

4) On vient de montrer que g-C est solution d'une équation de la forme : y'(t)=a(t)y(t) avec a une fonction continue sur I.

donc (d'après 2)) si g - C s'annule sur I alors elle est nulle sur I,

S'il existe
$$t_0 \in I$$
 tel que $g(t_0) = C$, alors g est constante sur I

Ex 12. 1) On peut commencer par remarquer que u ne s'annule pas sur \mathbb{R}^+ .

En effet : u est solution d'une équation de la forme y'=a(t)y donc $\exists k \in \mathbb{R} : u : t \longmapsto ke^{\left(\int_0^t a(s)ds\right)}$ et on sait que u(0)>0 ce qui entraı̂ne k>0 et ainsi $\forall t \in \mathbb{R}^+, u(t)>0$

uest dérivable sur \mathbb{R}^+ donc $p=\frac{1}{u}$ l'est aussi \quad et $\quad p'=-\frac{u'}{u^2}$

on a
$$u' = u(r_1 - u)$$
 donc $-\frac{u'}{u^2} = -\frac{1}{u}(r_1 - u)$ ou encore $p' = -r_1 p + 1$

On reconnait une équation différentielle linéaire à coefficients constants dont les solutions sont les fonctions $t \longmapsto ke^{-r_1t} + \frac{1}{r_1}$, sachant de plus que $p(0) = \frac{1}{u(0)}$, il vient :

$$p(t) = \left(\frac{1}{u(0)} - \frac{1}{r_1}\right)e^{-r_1t} + \frac{1}{r_1}$$

2) la relation précédente et
$$u=\frac{1}{p}$$
 donne : $u(t)=\frac{1}{\left(\frac{1}{u(0)}-\frac{1}{r_1}\right)e^{-r_1t}+\frac{1}{r_1}}$ ou encore :

$$u(t) = \frac{u(0)r_1}{r_1e^{-r_1t} + u(0)\left(1 - e^{-r_1t}\right)}.$$

3)
$$r_1 > 0$$
 donc $\lim_{t \to +\infty} e^{-r_1 t} = 0$ et ainsi : $\lim_{t \to +\infty} u(t) = r_1$

Ex 13. 1) • Sur
$$]0; +\infty[$$
, $(E_0): y' - \left(2t - \frac{1}{t}\right)y = 0 \iff y'(t) + a(t)y(t) = 0$ avec $a(t) = -\left(2t - \frac{1}{t}\right)$.

la fonction a est continue sur $]0; +\infty[$.

En prenant $A: t \longrightarrow -t^2 + \ln(t)$ comme primitive de a sur $]0; +\infty[$ on a:

$$\exp(-A(t)) = \exp(t^2 - \ln(t)) = \exp(t^2) \exp(-\ln(t)) = \frac{e^{(t^2)}}{t}$$

Les solutions de (E_0) sont les fonctions $t \mapsto k \frac{e^{(t^2)}}{t}$ (où k est une constante réelle)

• (Méthode de variation de la constante :)

(Je vous montre plusieurs présentations, n'hésitez pas à me montrer la votre).

Présentation 1:

Soit k une fonction dérivable sur $]0; +\infty[$, on note $: g: t \longmapsto k(t) \frac{e^{(t^2)}}{t}$ ou encore $k(t)f_0(t)$

$$g \in S_E \iff \forall t \in]0; +\infty[, \quad g'(t) + a(t)g(t) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad \left(k'(t)f_0(t) + k(t)f_0'(t)\right) + a(t)k(t)f_0(t) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t)f_0(t) + k(t)\left(f_0'(t) + a(t)f_0(t)\right) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t)f_0(t) = 1 \quad (car \ f_0 \ solution \ de \ (E_0))$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t) = te^{(-t^2)}$$

En prenant $k:t\longmapsto -\frac{1}{2}\,e^{(-t^2)}$ on obtient que $g:t\longmapsto -\frac{1}{2t}$ est une solution de (E).

Présentation 2:

Soit k une fonction dérivable sur $]0; +\infty[$, on note $:g:t\longmapsto k(t)\frac{e^{(t^2)}}{t}$ ou encore $k(t)f_0(t)$

$$g \in S_E \iff g' + ag = 1$$

$$\iff k'f_0 + kf'_0 + akf_0 = 1$$

$$\iff k'f_0 = 1 \qquad (car \ f_0 \ solution \ de \ (E_0))$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t) = te^{(-t^2)}$$

En prenant $k: t \longmapsto -\frac{1}{2} e^{(-t^2)}$ on obtient que $g: t \longmapsto -\frac{1}{2t}$ est une solution de (E).

Présentation 3:

Soit k une fonction dérivable sur $[0; +\infty[$, on note : $g: t \longmapsto k(t) \exp(-A(t))$

$$g \in S_E \iff \forall t \in]0; +\infty[, \quad g'(t) + a(t)g(t) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad \left(k'(t) \exp(-A(t)) - a(t)k(t) \exp(-A(t))\right) + a(t)k(t) \exp(-A(t)) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t) \exp(-A(t)) = 1$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t) = \exp(A(t))$$

$$\iff \forall t \in]0; +\infty[, \quad k'(t) = te^{(-t^2)}$$

En prenant $k: t \longrightarrow -\frac{1}{2} e^{(-t^2)}$ on obtient que $g: t \longrightarrow -\frac{1}{2t}$ est une solution de (E).

Présentation 4:

Soit k une fonction dérivable sur $]0; +\infty[$, on note $: g: t \longmapsto k(t) \exp(t^2 - \ln(t))$ $g \in S_E \iff \forall t \in]0; +\infty[$, $g'(t) - \left(2t - \frac{1}{t}\right)g(t) = 1$ $\iff k'(t) \exp(t^2 - \ln(t)) + \left(2t - \frac{1}{t}\right)k(t) \exp(t^2 - \ln(t) - \left(2t - \frac{1}{t}\right)k(t) \exp(t^2 - \ln(t)) = 1$ $\iff k'(t) \exp(t^2 - \ln(t)) = 1$ $\iff \forall t \in]0; +\infty[$, $k'(t) = te^{(-t^2)}$

En prenant $k:t\longmapsto -\frac{1}{2}\,e^{(-t^2)}$ on obtient que $g:t\longmapsto -\frac{1}{2t}$ est une solution de (E).

On peut alors conclure:

$$S_{(E)} = \left\{ \begin{array}{ccc}]0; +\infty[& \longrightarrow & \mathbb{R} \\ & t & \longmapsto & -\frac{1}{2t} + k \frac{e^{(t^2)}}{t} \end{array} \right. \quad k \in \mathbb{R} \quad \right\}$$

2) Soit $f: t \longmapsto -\frac{1}{2t} + k \frac{e^{(t^2)}}{t}$ une solution de (E),

$$f(1) = -\frac{1}{2} \iff -\frac{1}{2} + k \times \frac{e}{1} = -\frac{1}{2}$$
$$\iff k = 0$$

La solution vérifiant
$$y(1) = -\frac{1}{2}$$
 est la fonction $t \longmapsto -\frac{1}{2t}$

3) Soit $f: t \longmapsto -\frac{1}{2t} + k \frac{e^{(t^2)}}{t}$ une solution de (E),

$$f(1) = \frac{1}{2} \iff -\frac{1}{2} + k \times \frac{e}{1} = \frac{1}{2}$$
$$\iff k = e^{-1}$$

La solution vérifiant
$$y(1) = \frac{1}{2}$$
 est la fonction $x \mapsto -\frac{1}{2t} + \frac{e^{(t^2-1)}}{t}$

4) Cherchons une solution de l'équation (E_3) : $y' - \left(2t - \frac{1}{t}\right)y = e^{(t^2)}$ comme à la question 1). Pour k une fonction dérivable sur $]0; +\infty[$, on note : $g: x \longmapsto k(t)f_0(t)$

$$g$$
 solution $\iff \forall t \in]0; +\infty[, k'(t)f_0(x) = e^{(t^2)}]$
 $\iff \forall t \in]0; +\infty[, k'(t) = t]$

En prenant $k: t \longmapsto \frac{t^2}{2}$ on obtient que $g: t \longmapsto \frac{1}{2}te^{(t^2)}$ est une solution de (E_3) .

En conclusion:

$$S_{(E_2)} = \left\{ \begin{array}{ccc}]0; +\infty[& \longrightarrow & \mathbb{R} \\ & t & \longmapsto & -\frac{1}{2t} + \frac{1}{2} t \, e^{(t^2)} + k \, \frac{e^{(t^2)}}{t} \end{array} \right. \quad k \in \mathbb{R} \quad \right\}$$