Feuille_Cours_5 : Variables aléatoires discrètes. Espérance. Théorème de transfert.

Définition	Une	variable	$al\'eatoire$	$discr\`ete.$	

Ex 1. Donner des exemples de variable aléatoire discrète.

Proposition Une variable aléatoire discrète bien définie par sa loi.

Ex 2. Dans les cas suivants vérifier si la variable aléatoire X est bien définie.

1)
$$X(\Omega) = \{-1, 0, 2, 3\}$$
 et $P(X = -1) = \frac{1}{2}$, $P(X = 0) = \frac{1}{6}$, $P(X = 2) = \frac{1}{6}$ et $P(X = 3) = \frac{1}{6}$

$$2) \ \text{ Pour } n \text{ fix\'e dans } \mathbb{N}^*, \qquad X(\Omega) = \left\{ \left. \frac{k}{n} \; \middle| \; k \in \llbracket 0, n \rrbracket \right. \right\} \quad \text{ et } \quad \forall k \in \llbracket 0, n \rrbracket, \quad P\left(\left[X = \frac{k}{n} \right] \right) = \frac{1}{n}$$

$$3) \ \text{ Pour } n \text{ fix\'e dans } \mathbb{N}^*, \qquad X(\Omega) = \left\{ \left. \frac{k}{n} \; \middle| \; k \in \llbracket 1, n \rrbracket \right. \right\} \quad \text{ et } \quad \forall k \in \llbracket 1, n \rrbracket, \quad P\left(\left[X = \frac{k}{n} \right] \right) = \frac{1}{n}$$

4)
$$X(\Omega) = \{(-1)^{n+1}n \mid n \in \mathbb{N} \}$$
 $\forall n \in \mathbb{N}, P([X = (-1)^{n+1}n]) = \frac{1}{2^{n+1}}$

5)
$$X(\Omega) = \left\{ \frac{(-1)^n}{n} \mid n \in \mathbb{N}^* \right\} \qquad \forall n \in \mathbb{N}^*, \quad P\left(\left\lceil X = \frac{(-1)^n}{n} \right\rceil \right) = \frac{n}{2^n}$$

6)
$$(*) X(\Omega) = \{(n-2)^2 \mid n \in \mathbb{N} \} \quad \forall n \in \mathbb{N}, \quad P([X = (n-2)^2]) = \frac{1}{e n!}$$

Proposition Une variable aléatoire discrète bien définie avec une expérience aléatoire.

Ex 3. Dans chacun des cas suivants dire si X peut être modélisée par une variable aléatoire discrète.

En pratique on dira: "X est bien définie".

- 1) On lance un dé 100 fois et on note X la valeur minimale des numéros.
- 2) On lance un dé 100 fois et on note X le rang du premier $\mathbf{6}$.
- 3) On lance un dé indéfiniment et on note X le rang du premier $\mathbf{6}$.
- 4) (*) On lance un dé indéfiniment et on note X le nombre de \mathfrak{G} obtenu. Indication : On montrera que : pour tout $k \in \mathbb{N}$, P(X = k) = 0, en utilisant $A_{n,k}$: "le dernier \mathfrak{G} est en n et jusqu'à n (compris) il y a exactement k \mathfrak{G} "

Définition Espérance d'une variable aléatoire discrète.

 $X(\Omega)$ fini :

 $X(\Omega)$ dénombrable :

Ex 4. Dans les cas suivants où X est une variable aléatoire bien définie, calculer son espérance si elle existe.

- 1) $X(\Omega) = \{-1, 0, 2, 3\}$ et $P(X = -1) = \frac{1}{2}$, $P(X = 0) = \frac{1}{6}$, $P(X = 2) = \frac{1}{6}$ et $P(X = 3) = \frac{1}{6}$
- $2) \ \text{ Pour } n \text{ fix\'e dans } \mathbb{N}^*, \qquad X(\Omega) = \left\{ \left. \frac{k}{n} \; \middle| \; k \in \llbracket 0, n \rrbracket \right. \right\} \quad \text{ et } \quad \forall k \in \llbracket 0, n \rrbracket, \quad P\left(\left[X = \frac{k}{n} \right] \right) = \frac{1}{n+1}$
- 3) $X(\Omega) = \{(-1)^{n+1}(n+2) \mid n \in \mathbb{N} \}$ $\forall n \in \mathbb{N}, P([X = (-1)^{n+1}(n+2)]) = \frac{1}{(n+1)(n+2)}$
- 4) $X(\Omega) = \left\{ \frac{(-1)^n}{n} \mid n \in \mathbb{N}^* \right\} \qquad \forall n \in \mathbb{N}^*, \quad P\left(\left[X = \frac{(-1)^n}{n} \right] \right) = \frac{n}{2^{n+1}}$

Ex 5. Soit X un variable aléatoire discrète telle que $X(\Omega) = \{x_n \mid n \in \mathbb{N} \}$ (avec $\forall (i,j) \in \mathbb{N}^2$, $i \neq j \Rightarrow x_i \neq x_j$), Montrer que : si X est bornée alors X admet une espérance.

Théorème Théorème de transfert pour une variable aléatoire discrète.

 $X(\Omega)$ fini:

 $X(\Omega)$ dénombrable :

 \mathbf{Ex} 6. 1) Soit X la variable aléatoire de loi de probabilité

x	-2	-1	0	1	2	3
P(X=x)	1	1	1	1	1	1
	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$

Calculer $E(X^2)$.

- 2) Soient $n \in \mathbb{N}^*$ et $X \hookrightarrow \mathscr{U}(\llbracket 1, n \rrbracket)$. Calculer $E\left(\frac{1}{X(X+1)}\right)$.
- 3) Soit X une variable aléatoire de loi : $X(\Omega) = \mathbb{N}$ et pour tout $k \in \mathbb{N}$, $P(X = k) = \frac{3}{4^{k+1}}$. Calculer, si elle existe, l'espérance de X(1 X).
- 4) Soit X une variable aléatoire de loi : $X(\Omega) = \mathbb{N}$ et pour tout $k \in \mathbb{N}$, $P(X = k) = \frac{2^k}{k!}e^{-2}$. Calculer, si elle existe, l'espérance de $(-1)^X X$.