BCPST 2_A 2025/2025

Feuille_Exo_6: Autour des chaines de Markov.

Ex 1 : En cas d'incident et sans intervention d'un technicien, un système électrique se trouve dans un des trois états suivants :

- état E_1 : premier type d'incident non critique.
- état E_2 : second type d'incident non critique.
- état E_3 : incident critique. Le système est définitivement à l'arrêt.

Dans une telle situation, son état est, à chaque heure, susceptible d'évoluer et de passer d'un état à un autre. p désignant un réel de]0,1[et q=1-p, on a les probabilités suivantes :

La probabilité de rester en une heure en E_1 ou en E_2 est égale à p.

La probabilité de passer de E_1 à E_2 ou de E_2 à E_3 est égale à q.

Le système électrique ne peut donc pas passer de l'état E_2 à E_1 ni de l'état E_3 à E_2 , ni de l'état E_3 à E_1 . On définit pour $k \in \mathbb{N}$ les événements suivants :

 $E_{1,k}$: "Le système est dans l'état E_1 après k heures ".

 $E_{2,k}$: "Le système est dans l'état E_2 après k heures ".

 $E_{3,k}$: "Le système est dans l'état E_3 après k heures ".

- 1) Faire un graphe permettant de visualiser les données.
- 2) Faire une arbre pondérée permettant de visualiser le modèle pour k allant de 0 à 3.
- 3) Déterminer (en justifiant) une matrice A telle que :

$$\begin{pmatrix} P(E_{1,k+1}) \\ P(E_{2,k+1}) \\ P(E_{3,k+1}) \end{pmatrix} = A \begin{pmatrix} P(E_{1,k}) \\ P(E_{2,k}) \\ P(E_{3,k}) \end{pmatrix}$$

4) En déduire une relation matricielle entre les deux matrices lignes :

$$(P(E_{1,k+1}) \quad P(E_{2,k+1}) \quad P(E_{3,k+1}))$$
 et $(P(E_{1,k}) \quad P(E_{2,k}) \quad P(E_{3,k}))$

- 5) Ecrire $\begin{pmatrix} P(E_{1,k}) \\ P(E_{2,k}) \\ P(E_{3,k}) \end{pmatrix}$ en fonction de k, A et $\begin{pmatrix} P(E_{1,0}) \\ P(E_{2,0}) \\ P(E_{3,0}) \end{pmatrix}$.
- 6) Justifier que pour tout $k \in \mathbb{N}$:

$$\begin{pmatrix} P(E_{1,k}) \\ P(E_{2,k}) \\ P(E_{3,k}) \end{pmatrix} = \begin{pmatrix} (P_{E_{j,0}}(E_{i,k}))_{1 \leqslant i,j \leqslant 3} \\ (P_{E_{j,0}}(E_{i,k}))_{1 \leqslant i,j \leqslant 3} \end{pmatrix} \begin{pmatrix} P(E_{1,0}) \\ P(E_{2,0}) \\ P(E_{3,0}) \end{pmatrix}$$

7) Interpréter pour $k \in \mathbb{N}$, les coefficients de A^k .

Ex 2: La ruine du joueur

Un joueur joue à pile ou face contre un adversaire. La pièce a une probabilité p de faire pile. Si elle fait pile, le joueur reçoit un euro de son adversaire. Si elle fait face, il donne un euro à l'adversaire. Au début, le joueur possède k euros et son adversaire N-k euros. Les fortunes des deux personnes évoluent ainsi jusqu'à ce que l'un des deux ait gagné tout l'argent de son adversaire, après quoi elles cessent d'évoluer : on n'est pas autorisé à risquer de s'endetter.

Chaque lancer dure une minute. On note X_n la fortune du joueur après n minutes à ce jeu.

- 1) Faire un graphe permettant de visualiser les données.
- 2) Ecrire une relation matricielle donnant la loi de X_{n+1} en fonction de celle de X_n .

Ex 3: Une urne contient initialement N boules vertes et trois boules rouges.

On tire successivement 1 boule et :

si elle est verte, on la remet dans l'urne,

si elle est rouge, on la retire de l'urne.

On note pour chaque couple d'entiers naturels (n, k) tel que $k \leq 3$:

 $E_{k,n}$: "au bout des n premiers tirages, il reste k boules rouges dans l'urne".

et on note pour chaque entier n, $a_n = P(E_{0,n})$, $b_n = P(E_{1,n})$, $c_n = P(E_{2,n})$ et $d_n = P(E_{3,n})$.

1) Déterminer une matrice $M \in \mathcal{M}_4(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$,

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \\ d_{n+1} \end{pmatrix} = M \begin{pmatrix} a_n \\ b_n \\ c_n \\ d_n \end{pmatrix}$$

2) Déterminer des matrices colonnes non nulles $C_0,\,C_1,\,C_2$ et C_3 telles que

$$MC_0 = C_0$$
 $MC_1 = \frac{N}{N+1}C_1$ $MC_2 = \frac{N}{N+2}C_2$ $MC_3 = \frac{N}{N+3}C_3$

3) a_n, b_n, c_n, d_n en fonction de n.

Ex 4 : Soit $p \in]0,1[$, on lance indéfiniment une pièce qui donne pile avec une probabilité égale à p.

On définit les événements pour $n \in \mathbb{N}$,

 A_n : au bout des n premiers lancers, on a obtenu un nombre pair de piles.

 B_n : au bout des n premiers lancers, on a obtenu un nombre impair de piles.

1) Trouver une matrice $M \in \mathcal{M}_2(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$,

$$\begin{pmatrix} P(A_{n+1}) \\ P(B_{n+1}) \end{pmatrix} = M \begin{pmatrix} P(A_n) \\ P(B_n) \end{pmatrix}$$

- 2) Exprimer $P(B_n)$ en fonction de $P(A_n)$.
- 3) En déduire une relation de récurrence entre les termes de $(P(A_n))$.
- 4) Calculer $P(A_n)$ en fonction de l'entier n.
- 5) Déterminer et interpréter la limite de $(P(A_n))$.

Ex 5 : On utilise 3 urnes nommées Rouge, Verte et Jaune. Chacune contient 6 boules dont des rouges, des vertes et des jaunes.

A chaque tour, on tire avec remise une boule dans l'urne "en cours" et la couleur de la boule tirée indique l'urne du prochain tirage.

L'urne Rouge contient 1 boule rouge, 2 vertes et 3 jaunes.

L'urne Verte contient 2 boules rouges, 2 vertes et 2 jaunes.

L'urne Jaune contient 3 boule rouge, 0 verte et 3 jaunes.

Pour tout $n \in \mathbb{N}^*$ on définit les événements R_n , V_n et J_n par

 ${\cal R}_n$ est réalisé lorsque le $n^{\rm ième}$ tirage se fait dans l'urne Rouge.

 V_n est réalisé lorsque le $n^{\text{ième}}$ tirage se fait dans l'urne Verte.

 J_n est réalisé lorsque le $n^{\rm i\`eme}$ tirage se fait dans l'urne Jaune.

Le premier tirage se fait dans l'urne Rouge.

- 1) En appliquant la formule des probabilités totales, trouver une relation de récurrence entre $P(R_{n+1})$, $P(V_{n+1})$, $P(J_{n+1})$ et $P(R_n)$, $P(V_n)$, $P(J_n)$.
- 2) Exprimer pour $n \in \mathbb{N}^*$, $P(J_n)$ en fonction de $P(R_n)$ et $P(V_n)$.
- 3) En déduire deux matrices $M \in \mathcal{M}_2(\mathbb{R})$ et $C \in \mathcal{M}_{2,1}(\mathbb{R})$ telles que :

$$\forall n \in \mathbb{N}^*, \quad \begin{pmatrix} P(R_{n+1}) \\ P(V_{n+1}) \end{pmatrix} = M \begin{pmatrix} P(R_n) \\ P(V_n) \end{pmatrix} + C$$