Feuille_Cours_5-2 : Variables aléatoires discrètes. Variance.

Ex 1: Soit X une variable aléatoire discrète telle que X^2 admet une espérance.

1) Question préliminaire : montrer que pour tout $x \in \mathbb{R}$, $|x| \leq 1 + x^2$.

2) En déduire que : X possède une espérance.

 $\mathbf{Ex}\ \mathbf{2}:\ 1)$ Soit X la variable aléatoire de loi de probabilité :

x	-2	-1	0	1
P(X=x)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$

Calculer V(X).

2) Soit X une variable de Bernoulli de paramètre p.

On rappelle que E(X) = p, déterminer la variance de X.

3) a. Soient $n \in \mathbb{N}^*$ et X une variable aléatoire suivant la loi uniforme sur [0; n].

On rappelle que
$$E(X) = \frac{n}{2}$$
, Montrer que : $V(X) = \frac{n^2 + 2n}{12}$

b. Soit X une variable aléatoire suivant la loi uniforme sur [a;b] (où a et b sont deux entiers vérifiant $a \leq b$).

Montrer que
$$V(X) = \frac{(b-a)(b-a+2)}{12}$$

4) Soit X une variable aléatoire suivant la loi binomiale de paramètres (n, p).

On rappelle que
$$E(X) = np$$
, Montrer que $V(X) = np(1-p)$.

5) Soit $p \in]0,1[$, on note q=1-p et soit X une variable aléatoire telle que :

$$X(\Omega) = \mathbb{N}^*$$
 et $\forall k \in \mathbb{N}^*$; $P(X = k) = pq^{k-1}$.

- a. Montrer que X est correctement définie.
- b. Montrer que X admet une espérance et la calculer.
- c. Montrer que X admet une variance et la calculer.
- 6) Soit $\lambda \in \mathbb{R}_+^*$ et soit X une variable aléatoire telle que :

$$X(\Omega) = \mathbb{N}$$
 et $\forall k \in \mathbb{N}; \ P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$

- a. Montrer que X est correctement définie.
- b. Montrer que X admet une espérance et la calculer.
- c. Montrer que X admet une variance et la calculer.

Ex 3: Dans les cas suivants, calculer sa variance si elle existe.

1)
$$X(\Omega) = \{(-1)^{n+1}n \mid n \in \mathbb{N} \}$$
 $\forall n \in \mathbb{N}, P([X = (-1)^{n+1}n]) = \frac{1}{2^{n+1}}$

$$2) \ X(\Omega) = \left\{ \frac{(-1)^n}{n} \mid n \in \mathbb{N}^* \right\} \qquad \forall n \in \mathbb{N}^*, \quad P\left(\left\lceil X = \frac{(-1)^n}{n} \right\rceil \right) = \frac{n}{2^{n+1}}$$

3)
$$X(\Omega) = \{2n \mid n \in \mathbb{N}^* \} \quad \forall n \in \mathbb{N}^*, \quad P([X = 2n]) = \frac{2}{3^n}.$$

4)
$$X(\Omega) = \{(-1)^n 2^n \mid n \in \mathbb{N} \}$$
 $\forall n \in \mathbb{N}, P([X = (-1)^n 2^n]) = \frac{2^n e^{-2}}{n!}$

5)
$$X(\Omega) = \mathbb{N}$$
 $\forall n \in \mathbb{N}$, $P([X = n]) = \frac{1}{e n!}$