
BCPST 2A

Correction du devoir surveillé 4 (samedi 22 novembre)

Exercice 1.
1) a) Si on regarde les moteurs d’un trimoteur, c’est une succession de trois épreuves de Bernoulli identiques et

indépendantes (succès : "le moteur est en panne", de probabilité x) ; X3 est le nombre de succès donc
X3 ↪→ B(3, x) et E(X3) = 3x

On raisonne de même pour obtenir :
X3 ↪→ B(4, x) et E(X4) = 4x

b) On a :

P (X3 < 3/2) = P (X3 = 0) + P (X3 = 1)

= (1− x)3 + 3x(1− x)2

= (1− x)2(1 + 2x)

La réponse développée est : P (X3 < 3/2) = 1− 3x2 + 2x3

c) De même :

P (X4 < 2) = P (X4 = 0) + P (X4 = 1)

= (1− x)4 + 4x(1− x)3

= (1− x)3(1 + 3x)

La réponse développée est : P (X4 < 2) = 1− 6x2 + 8x3 − 3x4

2) a) Notons :
- A : «le moteur sous l’aile gauche ne tombe pas en panne»
- B : «le moteur sous l’aile droite ne tombe pas en panne»
- C : «le moteur en queue d’avion ne tombe pas en panne».
Chacun de ces évènements a pour probabilité 1− x et ils sont mutuellement indépendants.
On cherche la probabilité de : T = ((A ∩B) ∪ C) donc

P (T ) = P(A ∩B) + P(C)− P(A ∩B ∩ C)

= P(A)P(B) + P(C)− P(A)P(B)P(C)

= (1− x)2 + (1− x)− (1− x)3

= (1− x)
(
1− x+ 1− (1− x)2

)
P(T ) = (1− x)

(
1 + x− x2

)
b) Notons maintenant :

G1 : «le 1er moteur sous l’aile gauche tombe en panne»
G2 : «le 2ème moteur sous l’aile gauche tombe en panne»
D1 : «le 1er moteur sous l’aile droite tombe en panne»
D2 : «le 2ème moteur sous l’aile droite tombe en panne».

Q = (G1 ∩G2) ∪ (D1 ∩D2) donc

P (Q) = 1−
(
P (G1 ∩G2) + P (D1 ∩D2)− P (G1 ∩G2 ∩D1 ∩D2)

)
= 1− (x2 + x2 − x4)

P(Q) =
(
1− x2

)2
= (1− x)2(1 + x)2

c) On remarque que :

P (T )− P (Q) = (1− x)
(
1 + x− x2

)
− (1− x)2(1 + x)2

= (1− x)(1 + x− x2 − (1− x)(1 + 2x+ x2))

= (1− x)x3

> 0 car x ∈]0, 1[

Les trimoteurs sont plus sûrs que les quadrimoteurs.
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Exercice 2 .

1) Soit c ∈ R, on note f : x 7−→ c, on a f ′(x) = 0

∀x ∈ R, f ′(x) = f(x)2 + f(x) si, et seulement si, 0 = c2 + c

donc f est solution de (E2) si, et seulement si, c = 0 ou c = −1

les solutions constantes de (E2) sont x 7−→ 0 et x 7−→ −1

2) a) La fonction g est dérivable sur R et pour tout réel x,

g′(x) = f ′(x) exp(−A(x))− f(x)A′(x) exp(−A(x))

=
(
f ′(x)− f(x)(1 + f(x))

)
exp(−A(x)) car A′(x) = 1 + f(x)

= 0 car f solution de (E2)

R étant un intervalle on peut en conclure g est une fonction constante

b) Soit f une solution non nulle de (E2) on alors d’après la question précédente il existe k ∈ R tel que
∀x ∈ R, f(x) exp(−A(x)) = k ou encore ∀x ∈ R, f(x) = k exp(A(x))

f est non nulle donc k ̸= 0 et ainsi f ne s’annule pas sur R.
si f est une solution non nulle de (E2) alors f ne s’annule pas sur R

3) a) f est dérivable sur R et ne s’annule pas donc h est dérivable sur R et h′ = − f ′

f2

et sachant que ∀x ∈ R, f ′(x) = f(x)2 + f(x) on obtient h′ + h = −1

La fonction h est solution de y′ + y = −1.

b) La fonction h est une solution de y′ + y = −1, donc il existe λ ∈ R tel que : ∀x ∈ R, h(x) = λe−x − 1

mais la fonction h ne s’annule pas sur R car h =
1

f
donc nécessairement λ ⩽ 0

il existe un λ ∈ R− tel que ∀x ∈ R, f(x) =
1

λe−x − 1

Remarque : On a montré ici l’implication :

Si f solution non nulle de (E2) alors il existe un λ ∈ R− tel que ∀x ∈ R, f(x) =
1

λe−x − 1

4) Soit λ ∈ R− on note f : x 7−→ 1

λe−x − 1

(Cette fonction f est nouvelle elle n’est pas la même que f de la question 3) on ne sait pas qu’elle vérifie (E2) )

cette fonction est dérivable sur R et ∀x ∈ R, f ′(x) =
λe−x

(λe−x − 1)2

de plus f(x)(1 + f(x)) =
1

λe−x − 1

(
1 +

1

λe−x − 1

)
=

λe−x

(λe−x − 1)2
.

donc on a bien : ∀x ∈ R, f ′(x) = f(x)2 + f(x) ce qui montre que f est solution de (E2).

Remarque : On a montré ici l’implication :

S’il existe un λ ∈ R− tel que ∀x ∈ R, f(x) =
1

λe−x − 1
alors f solution de (E2)

En résumant la réponse aux questions 3) et 4) :

Pour f une fonction non nulle on a l’équivalence :

f solution de (E2) si, et seulement s’il existe un λ ∈ R− tel que ∀x ∈ R, f(x) =
1

λe−x − 1

on peut alors conclure : (Attention à ne pas oublier la solution nulle) 1

S(E2) = {x 7−→ 0}
⋃  R −→ R

x 7−→ 1

λe−x − 1

∣∣∣∣∣∣ λ ∈ R−


1. On remarquera que la solution constante égale à −1 est bien dans cet ensemble en prenant λ = 0
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Problème.

Partie A.

1) a) Pour x ∈]−∞, 1[, x− 1 ̸= 0

donc (E) est équivalente à l’équation différentielle linéaire du premier ordre (toujours noté (E)) :

y′ +
1

x− 1
y =

e−x

x− 1
,

de la forme y′ + a(x)y = b(x), où les fonctions a et b sont continues sur ]−∞, 1[.

b) On note (E0) : y′ +
1

x− 1
y = 0 l’équation différentielle homogène associée à (E).

La fonction A : x 7→ ln |x− 1| est une primitive de a : x 7−→ 1

x− 1
sur ]−∞, 1[ et :

∀x ∈]−∞, 1[, e− ln |x−1| =
1

|x− 1|
=

1

1− x

On en déduit l’ensemble S0 des solutions de (E0) :

S0 =

{
(]−∞, 1[→ R, x 7→ λ

1− x
), λ ∈ R

}
=

{
(]−∞, 1[→ R, x 7→ λ

x− 1
), λ ∈ R

}
.

c) Appliquons la méthode « de variation de la constante » en déterminant une solution particulière fp de (E)

de la forme x 7→ λ(x)

x− 1
, où λ est une fonction dérivable sur ]−∞, 1[.

On a : ∀x ∈]−∞, 1[, f ′
p(x) +

1

x− 1
fp(x) =

λ′(x)

x− 1
, donc :

(fp est solution de (E)) ⇐⇒ ∀x ∈]−∞, 1[,
λ′(x)

x− 1
=

e−x

x− 1
⇐⇒ ∀x ∈]−∞, 1[, λ′(x) = e−x.

On en déduit que la fonction : ]−∞, 1[→ R, x 7→ − e−x

x− 1
est une solution particulière de (E) sur ]−∞, 1[.

Notons que l’on peut écrire : ∀x ∈]−∞, 1[,
− e−x

x− 1
=

e−x

1− x
=

1

ex(1− x)
.

On obtient en conclusion l’ensemble des solutions de (E) sur ]−∞, 1[:

S =

{
]−∞, 1[→ R, x 7→ 1

ex(1− x)
+

λ

x− 1
), λ ∈ R

}
2) a) Pour tout réel λ, notons fλ la fonction : ]−∞, 1[→ R, x 7→ 1

ex(1− x)
+

λ

x− 1
.

On a les équivalences suivantes : fλ(0) = 1 ⇐⇒ 1− λ = 1 ⇐⇒ λ = 0.
On en déduit que :

f est l’unique solution de (E) satisfaisant à la condition initiale y(0) = 1.

b) f est solution de (E), donc f dérivable sur ]−∞, 1[ et ∀x ∈]−∞, 1 [, f(x) + (x− 1)f ′(x) = e−x .
Il s’ensuit :

∀x ∈]−∞, 1[, f ′(x) =
1

x− 1
e−x − f(x)) =

1

x− 1

(
1

ex
− 1

ex(1− x)

)
=

x

ex(x− 1)2

∀x ∈]−∞, 1[, f ′(x) =
x

ex(x− 1)2

Donc, sur ]−∞, 1 [, f ′(x) est du signe de x, ce qui implique que

f est strictement décroissante sur ]−∞, 0] et strictement croissante sur [0, 1[.
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En +∞ : f(x) ∼
x→−∞

− 1

xex
et lim

x→−∞
xex = 0− (croissances comparées), donc : lim

x→−∞
f(x) = +∞.

En 1 : lim
x→1−

ex(1− x) = 0+. donc lim
x→1−

f(x) = +∞.

x −∞ 0 1

f ′(x) − 0 +

+∞ +∞
f ↘ ↗

1

3) Pour tout x appartenant à ]−∞, 1[ :

f(x) = e−x × 1

1− x

=
x→0

(
1− x+

1

2
x2 + o

(
x2

)) (
1 + x+ x2 + o

(
x2

))
=

x→0

(
1 + x+ x2

)
+
(
−x− x2

)
+

1

2
x2 + o

(
x2

)
,

f(x) =
x→0

1 +
1

2
x2 + o

(
x2

)
Partie B :

1) a) La fonction f est de classe C∞ sur ]−∞, 1[, donc f admet un développement limité en 0 à tout ordre,

ce qui justifie que dn existe pour tout n ∈ N .

b) D’après la formule de Taylor-Young, pour tout n ∈ N : f(x) =
x→0

n∑
k=0

f (k)(0)

k!
xk + o (xn).

On en déduit, par unicité du développement limité : ∀n ∈ N, dn =
f (n)(0)

n!

On a déjà obtenu : f(x) =
x→0

1 +
1

2
x2 + o

(
x2

)
, ce qui conduit à :

d0 = 1, d1 = 0 et d2 =
1

2
.

2) a) Montrons par récurrence sur n que ∀n ∈ N, ∀x ∈]−∞, 1
[
, (n+ 1)f (n)(x) + (x− 1)f (n+1)(x) = (−1)ne−x.

• Pour n = 0 : la fonction f étant solution de (E), elle vérifie donc :

∀x ∈]−∞, 1[, f(x) + (x− 1)f ′(x) = e−x

on a bien :
∀x ∈]−∞, 1

[
, (0 + 1)f (0)(x) + (x− 1)f (0+1)(x) = (−1)0e−x.

• Soit n ∈ N tel que ∀x ∈]−∞, 1[, (n+ 1)f (n)(x) + (x− 1)f (n+1)(x) = (−1)ne−x

On suppose que la propriété est vraie à un rang n

on en déduit en dérivant chacun des membres :

∀x ∈]−∞, 1[, (n+ 1)f (n+1)(x) + f (n+1)(x) + (x− 1)f (n+2)(x) = (−1)n+1e−x

ce qui donne :

∀x ∈]−∞, 1[, (n+ 2)f (n+1)(x) + (x− 1)f (n+2)(x) = (−1)n+1e−x

On retrouve la propriété au rang n+ 1

En conclusion :
∀n ∈ N, ∀x ∈]−∞, 1[, (n+ 1)f (n)(x) + (x− 1)f (n+1)(x) = (−1)ne−x

b) Du résultat précédent on déduit que, pour tout n ∈ N :

(n+ 1)f (n)(0)− f (n+1)(0) = (−1)n,
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donc, d’après 1)b)
(n+ 1)n!︸ ︷︷ ︸

(n+1)!

dn − (n+ 1)!dn+1 = (−1)n,

d’où :
(n+ 1)!dn+1 = (n+ 1)!dn − (−1)n = (n+ 1)!dn + (−1)n+1.

Il s’ensuit :

∀n ∈ N, dn+1 = dn +
(−1)n+1

(n+ 1)!
.

Partie C :

1) a)
Ω = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. Card(Ω) = 3! = 6

b) X(ω) ⊂ {0, 1, 3}

(X = 0) =
{
(3, 1, 2), (2, 3, 1)

}
donc P (X = 0) =

2

6

(X = 1) =
{
(1, 3, 2), (3, 2, 1), (2, 1, 3)

}
donc P (X = 1) =

3

6

(X = 3) =
{
(1, 2, 3)

}
donc P (X = 3) =

1

6

On obtient la loi de probabilité de X :

k 0 1 3
P (X = k) 1/3 1/2 1/6

c) P (X > 0) =
2

3
est la probabilité qu’au moins une personne retrouve son téléphone.

Sur un grand nombre de répétitions, on observerait que dans environ deux cas sur trois, au moins une
personne retrouve son téléphone et peut prévenir les secours.

2) Avec des notations standard :
a)

E(X) =

3∑
k=0

kP (X = k) = 1× 1

2
+ 3× 1

6
= 1,

b) E
(
X2

)
=

3∑
k=0

k2P (X = k) = 1× 1

2
+ 9× 1

6
= 2, donc, d’après la formule de Kœnig-Huygens :

V(X) = E
(
X2

)
− (E(X))2 = 2− 1 = 1.

Partie D :
On prend pour univers Ω l’ensemble des permutations des éléments de [[1, n]], que l’on munit de la loi de probabilité
uniforme P . On a : Card (Ω) = n!. Notons que Xn prend ses valeurs dans [[0, n]].

1) a) - Lorsqu’il n’y a qu’un seul invité, celui-ci repart avec son propre téléphone, donc : p1 = 0 .
- Lorsqu’il n’y a que deux invités, le premier qui prend un téléphone, choisit au hasard entre deux téléphones

donc : p2 =
1

2
.

- D’après C. 2. b. : P (X3 = 0) =
1

3
, donc : p3 =

1

3
.

b) Les résultats qui réalisent l’événements (X4 = 0) sont :

(2, 1, 4, 3), (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 1, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2), (4, 3, 2, 1).

Donc :

p4 =
9

4!
=

3× 3

4× 3× 2
p4 =

3

8
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2) a) Soient n ∈ N∗ et k ∈ [[0, n]].
Construire une redistribution des téléphones qui réalise l’événement (Xn = k), c’est :

- choisir les k téléphones qui repartiront avec leur propriétaire, il y a
(

n
k

)
façons de le faire,

- puis choisir une redistribution des n− k téléphones restants de telle sorte qu’aucun ne soit attribué à son
propriétaire, il y a Card (Xn−k = 0) façons de le faire,

donc : Card (Xn = k) =

(
n
k

)
Card (Xn−k = 0).

on obtient :
Card (Xn = k) =

n!

k!(n− k)!
× Card (Xn−k = 0)

On peut ainsi conclure :

∀n ∈ N∗, ∀k ∈ [[0, n]], P (Xn = k) =
pn−k

k!
.

b) Pour tout n ∈ N∗, l’ensemble des valeurs prises par Xn est inclus dans [[0, n]], donc :

n∑
k=0

P (Xn = k) = 1

autrement dit, d’après la question précédente :

n∑
k=0

pn−k

k!
= 1

De plus, pour n = 0, l’assertion : "
n∑

k=0

pn−k

k!
= 1 " s’écrit : " p0 = 1 ", ce qui est vrai d’après la convention

fixée par l’énoncé, donc :

∀n ∈ N,

n∑
k=0

pn−k

k!
= 1.

c) D’après la question précédente, pour tout entier naturel n :

n+1∑
k=0

pn+1−k

k!
= 1,

donc, en isolant le terme de la somme correspondant à k = 0 : pn+1 +

n+1∑
k=1

pn+1−k

k!
= 1, autrement dit :

pn+1 = 1−
n+1∑
k=1

pn+1−k

k!

Il s’ensuit que la suite (pn) vérifie les relations :


p0 = 1

∀n ∈ N, pn+1 = 1−
n+1∑
k=1

pn+1−k

k!
.

- De plus, d’après le principe de récurrence, ces relations permettent de calculer de proche en proche les

termes de la suite (pn), puisque dans la somme
n+1∑
k=1

pn+1−k

k!
ne figurent que des pi avec 0 ≤ i ≤ n.

En conclusion :

(pn) est caractérisée par :


p0 = 1

∀n ∈ N, pn+1 = 1−
n+1∑
k=1

pn+1−k

k!
.
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3) a) Soit n ∈ N∗. ( Xn(Ω) est fini donc Xn admet une espérance.)

E (Xn) =

n∑
k=0

kP (Xn = k) =

n∑
k=1

kP (Xn = k) =
D.2. a.

n∑
k=0

k
pn−k

k!
=

n∑
k=1

pn−k

(k − 1)!
=

n−1∑
k=0

pn−(k+1)

k!

d’où :

E (Xn) =

n−1∑
k=0

p(n−1)−k

k!

et d’après la question D. 2. c. :
E (Xn) = 1

On peut interpréter ce résultat de la façon suivante :
en moyenne, un seul des invités repart avec son propre téléphone à la fin de la soirée.

b) L’espérance ne permet d’avoir une idée de la probabilité de P (Xn > 0).
On peut avoir une espérance égale à 1 et une probabilité très faible.

(Exemple : P (X = 0) = 0, 99 et P (X = 100) = 0, 01)

c) X1 est une variable aléatoire certaine, donc : V (X1) = 0.
Soit maintenant n un entier supérieur ou égal à 2 . (Xn(Ω)) est fini donc Xn admet une variance.)
Commençons par calculer l’espérance de la variable aléatoire (Xn − 1)Xn :

E ((Xn − 1)Xn) =

n∑
k=0

(k − 1)kP (Xn = k) =

n∑
k=0

(k − 1)k
pn−k

k!
=

n∑
k=2

pn−k

(k − 2)!
=

n−2∑
k=0

pn−2−k

k!
= 1.

De plus, par linéarité de l’espérance : E ((Xn − 1)Xn) = E
(
X2

n −Xn

)
= E

(
X2

n

)
− E (Xn), donc :

E
(
X2

n

)
= E((Xn − 1)Xn) + E (Xn) = 1 + 1 = 2.

Enfin, d’après la formule de Kœnig-Huygens :

V (Xn) = E
(
X2

n

)
− E (Xn)

2
= 2− 1.

V (Xn) = 1

4) a) Pour tout n ∈ N∗, d’une part : (1− 1)n = 0n =
n≥1

0, et d’autre part, d’après la formule du binôme :

(1− 1)n =

n∑
k=0

(
n
k

)
1k(−1)n−k =

n∑
k=0

(−1)n−k

(
n
k

)
.

∀n ∈ N∗,

n∑
k=0

(−1)n−k

(
n
k

)
= 0.

b) Pour tout n de N, notons Pn l’assertion «
n∑

k=0

dn−k

k!
= 1 »

- P0 s’écrit : « d0 = 1 », donc P0 est vraie.

- Soit n ∈ N. Supposons Pn vraie et démontrons que Pn+1 est vraie, c’est-à-dire :
n+1∑
k=0

dn+1−k

k!
= 1.

n+1∑
k=0

dn+1−k

k!
=

n∑
k=0

1

k!

(
dn−k +

(−1)n−k+1

(n− k + 1)!

)
+

d0
(n+ 1)!

(d’après la formule de la partie B)

=

n∑
k=0

dn−k

k!
+

n∑
k=0

(−1)n+1−k

k!(n+ 1− k)!
+

1

(n+ 1)!

= 1 +
1

(n+ 1)!

n+1∑
k=0

(
n+ 1
k

)
(−1)n+1−k (d’après l’hypothèse de récurrence)

= 1 (avec le résultat de 5)a))

ce qui prouve que Pn+1 est vraie.

D’après le principe de récurrence, on a démontré :

∀n ∈ N,

n∑
k=0

dn−k

k!
= 1.
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c) On déduit de la question précédente :

∀n ∈ N, dn+1 = 1−
n+1∑
k=1

dn+1−k

k!

donc la suite (dn) vérifie : 
d0 = 1

∀n ∈ N, dn+1 = 1−
n+1∑
k=1

dn+1−k

k!
,

et d’après la question D. 2. c. :
∀n ∈ N, pn = dn

5) a) p0 = 1 et d’après la question précédente et la question B. 2. b. : ∀n ∈ N, pn+1 = pn +
(−1)n+1

(n+ 1)!
.

Une récurrence immédiate permet alors d’obtenir :

∀n ∈ N, pn =

n∑
k=0

(−1)k

k!

b) On sait que, pour tout réel x, la série exponentielle
∑
n≥0

xn

n!
converge et a pour somme ex, donc :

la suite (pn) converge et lim
n→+∞

pn = e−1 =
1

e

c) P (Xn > 0) = 1− pn lim
n→+∞

P (Xn > 0) = 1− e−1 ≈ 0,63

Pour n grand :
Si on répétait cette situation un grand nombre de fois, environ 6 fois sur 10, quelqu’un pourrait appeler
les secours.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remarque du correcteur :

On peut ici rappeler que, même si personne ne retrouve son propre téléphone, cela n’empêche pas d’appeler
les numéros d’urgence, qui restent accessibles depuis n’importe quel appareil.
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