BCPST 2_A 2025/2026

Correction de la feuille_Act_13 : Fonctions indicatrices.

Définition:

Soient E un ensemble et A une partie de E,

Soient
$$E$$
 un ensemble et A une partie de E ,

On appelle **fonction indicatrice** de A , $(not\acute{e}:\mathbb{1}_A)$ l'application de : $E\longrightarrow \{0,1\}$

$$x\longmapsto \begin{cases} 1 & \text{si } x\in A\\ 0 & \text{sinon} \end{cases}$$

Remarque: $\mathbb{1}_A$ peut prendre juste deux valeurs 0 et 1 donc $\forall x \in E$, $\mathbb{1}_A(x) = 1 \iff x \in A$.

Une autre notation.

Soit E un ensemble et P(x) une propriété dépendant d'un élément x de E. en notant $A = \{x \in E \mid P(x)\}$ pour tout $x \in E$, on note : $\mathbb{1}_{P(x)} = \mathbb{1}_A(x)$

Remarque: Si P(x) vraie alors $\mathbb{1}_{P(x)} = 1$ sinon $\mathbb{1}_{P(x)} = 0$.

Cours sur les ensembles finis :

Soit E un ensemble fini,

- **0** Soit A une partie de E, card $(A) = \sum_{x \in E} \mathbb{1}_A(x)$
- **2** Soient A et B deux parties de E, $\operatorname{card}(A \cap B) = \sum_{x \in A} \mathbb{1}_B(x)$

Cours sur l'indépendance des événements et des VAR :

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un système probabilisé.

- \bullet Si A est un événement alors $\mathbb{1}_A$ est une variable aléatoire suivant la loi de Bernoulli $\mathscr{B}(\mathbb{P}(A))$
- **2** (Complément) Soit $(A_k)_{1 \leq k \leq n}$ une famille d'événements, Les événements A_k sont mutuellement indépendants si, et seulement si, les variables aléatoires $\mathbb{1}_{A_k}$ sont indépendantes.

Ex 1: (Fait au tableau)

Ex 2: • S_1 est la somme des entiers pairs de [0; 2n], autrement dit : $S_1 = \sum_{k=0}^{n} 2k$ et ainsi $S_1 = 2\sum_{k=0}^{n} k$

$$S_1 = n(n+1)$$

$$S_{2}(k) = \sum_{i=0}^{n} \mathbb{1}_{1 \leq k-i \leq n}$$

$$= \sum_{i=0}^{n} \mathbb{1}_{k-n \leq i \leq k-1}$$

$$= \operatorname{card} ([[k-n, k-1]] \cap [[0; n]])$$

donc
$$S_2(k) = \begin{cases} 0 & \text{si} & k \le 0 \\ k & \text{si} & 1 \le k \le n \\ n & \text{si} & k = n+1 \\ 2n+1-k & \text{si} & n+2 \le k \le 2n \\ 0 & \text{si} & 2n+1 \le k \end{cases}$$

$$donc S_3 = \frac{n(n-1)}{2}$$

Ex 3: (non corrigé)

Ex 4 : 1) $\mathbb{1}_{\emptyset}$ est la fonction nulle et $\mathbb{1}_E$ est la fonction constante égale à 1.

- 2) a. Raisonnons par disjonction de cas.
 - pour $x \in A$, $\mathbb{1}_{\overline{A}}(x) + \mathbb{1}_{A}(x) = 0 + 1 = 1$
 - pour $x \notin A$, $\mathbb{1}_{\overline{A}}(x) + \mathbb{1}_{A}(x) = 1 + 0 = 1$

Dans tous les cas $\mathbb{1}_{\overline{A}}(x) + \mathbb{1}_A(x) = 1$ et ainsi $\boxed{\mathbb{1}_{\overline{A}} = 1 - \mathbb{1}_A}$

- b. \bullet pour $x \in A \cap B$, $\mathbb{1}_{A \cap B}(x) = 1$ et $\mathbb{1}_A(x) \times \mathbb{1}_B(x) = 1 \times 1 = 1$
 - \bullet pour $x\not\in A\cap B,\, \mathbbm{1}_{A\cap B}(x)=0$ et $1_A(x)=0$ ou $1_B(x)=0$ donc $1_A(x)\times \mathbbm{1}_B(x)=0$

Dans tous les cas $\mathbb{1}_{A \cap B}(x) = \mathbb{1}_A(x) \times \mathbb{1}_B(x)$ et ainsi $\boxed{\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B}$

- c. Raisonnons par disjonction de cas.
 - si $x \in A \cap B$, $\mathbb{1}_{A \cup B}(x) = 1$ et $\max(\mathbb{1}_A(x), \mathbb{1}_B(x)) = \max(1, 1) = 1$
 - si $x \in \overline{A} \cap B$, $\mathbb{1}_{A \cup B}(x) = 1$ et $\max(\mathbb{1}_A(x), \mathbb{1}_B(x)) = \max(0, 1) = 1$
 - •si $x \in A \cap \overline{B}$, $\mathbb{1}_{A \cup B}(x) = 1$ et $\max(\mathbb{1}_A(x), \mathbb{1}_B(x)) = \max(1, 0) = 1$
 - •si $x \in \overline{A} \cap \overline{B}$, $\mathbb{1}_{A \cup B}(x) = 0$ et $\max(\mathbb{1}_A(x), \mathbb{1}_B(x)) = \max(0, 0) = 0$

Dans tous les cas $\mathbb{1}_{A \cup B}(x) = \max(\mathbb{1}_A(x), \mathbb{1}_B(x))$ et ainsi $\mathbb{1}_{A \cup B} = \max(\mathbb{1}_A, \mathbb{1}_B)$

3) (non corrigée)

Ex 5: (non corrigée)

Ex 6: (non corrigée)

Ex 7: (non corrigée)

Extrait du sujet G2E 2025

Partie A.

1) a. La linéarité de E(.) donne E(S) = E(X) + E(Y) + E(Z) + E(T) donc

L'espérance de S est égale à x + y + z + t

Les variables sont mutuellement indépendantes donc V(S) = V(X) + V(Y) + V(Z) + V(T) donc

La variance de S est égale à
$$x(1-x) + y(1-y) + z(1-z) + t(1-t)$$

b. P est le produit de variables qui prennent pour valeurs 0 ou 1, donc P aussi et P suit une loi de Bernoulli.

de plus $(P=1)=(X=1)\cap (Y=1)\cap (Z=1)\cap (T=1)$ et les variables sont mutuellement indépendantes donc $\mathbb{P}(P=1)=xyzt$

P suit la loi de Bernoulli de paramètre xyzt

2) a. M est la valeur maximale prise par des variables qui prennent pour valeurs 0 ou 1, donc M aussi et M suit une loi de Bernoulli.

de plus $(M=0)=(X=0)\cap (Y=0)\cap (Z=0)\cap (T=0)$ et les variables sont mutuellement indépendantes donc $\mathbb{P}(M=0)=(1-x)(1-y)(1-z)(1-t)$

$$M$$
 suit la loi de Bernoulli de paramètre $1-(1-x)(1-y)(1-z)(1-t)$

m est la valeur minimale prise par des variables qui prennent pour valeurs 0 ou 1, donc m aussi et m suit une loi de Bernoulli.

de plus $(N=1)=(X=1)\cap (Y=1)\cap (Z=1)\cap (T=1)$ et les variables sont mutuellement indépendantes donc $\mathbb{P}(N=1)=xyzt$

N suit la loi de Bernoulli de paramètre xyzt

b. On sait $P((M=0)\cap (N=1))=0$ donc si M et N sont indépendantes alors $\mathbb{P}(M=0)=0$ ou $\mathbb{P}(N=1)=0$

donc nécessairement M est certaine égale à 1 ou N est certaine égale à 0.

Réciproquement, si une de ces deux variables aléatoires est certaine alors elles sont indépendantes.

de plus M est certaine égale à 1 si, et seulement si, x = 1 ou y = 1 ou z = 1 ou t = 1

et N est certaine égale à 0 si, et seulement si, x = 0 ou y = 0 ou z = 0 ou t = 0

En conclusion:

M et N sont indépendantes si, et seulement si, $(x, y, z, t) \notin [0, 1]^4$

Partie B.

- 3) On note X_i (resp. Y_i , Z_i et T_i) la variable aléatoire de Bernoulli qui prend la valeur 1 si, et seulement si, l'expérience menée par Xavière (resp. Yasmine, Zélie et Tina) sur l'échantillon i.
 - a. $A_i = (X_i = 1) \cap (Y_i = 1) \cap (Z_i = 1) \cap (T_i = 1)$ et ces 4 variables sont mutuellement indépendantes donc

$$P(A_i) = xyzt$$

b. $\mathbb{1}_{A_1} + \cdots + \mathbb{1}_{A_n}$ est le nombre d'échantillons pour lesquels les quatre expériences ont été non concluantes

 $\mathbb{1}_{A_i}$ suit la loi de Bernoulli de paramètre xyzt et les variables $(\mathbb{1}_{A_i})_{1\leqslant i\leqslant n}$ sont mutuellement indépendantes.

donc
$$\mathbb{1}_{A_1} + \cdots + \mathbb{1}_{A_n}$$
 suit la loi binomiale de paramètres $(n, xyzt)$

c. En notant $U=\mathbbm{1}_{A_1}+\cdots+\mathbbm{1}_{A_n}$ on cherche ici $\mathbb{P}(U=1)$ et comme $U\sim \mathscr{B}(n,xyzt)$ il vient :

La probabilité demandée est égale à :
$$nxyzt(1-xyzt)^{n-1}$$

- 4) Autrement dit : B_i : "au *i*ème échantillon les 4 expériences sont non toutes concluantes"
 - a. $\mathbb{1}_{B_1} + \dots + \mathbb{1}_{B_n}$ est le nombre d'échantillons pour lesquels les quatre expériences sont non toutes concluantes Remarque : $\overline{B_i}$: "au ième échantillon les 4 expériences sont toutes concluantes"
 - b. On note $V = \mathbbm{1}_{B_1} + \dots + \mathbbm{1}_{B_n}$ et on remarque que : $P(\overline{B_i}) = (1-x)(1-y)(1-z)(1-t)$ V suit la loi binomiale de paramètres $\left(n, 1-(1-x)(1-y)(1-z)(1-t)\right)$ et on veut $P\left(V \leqslant \frac{n}{2}\right)$ donc

La probabilité recherchée est :
$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} \Big(1 - (1-x)(1-y)(1-z)(1-t)\Big)^k \Big((1-x)(1-y)(1-z)(1-t)\Big)^{n-k}$$