BCPST 2_A 2025/2026

Feuille_Cours_5_3 : Variables aléatoires discrètes. Lois usuelles dénombrables.

La loi géométrique. (Temps d'attente, une loi sans mémoire)

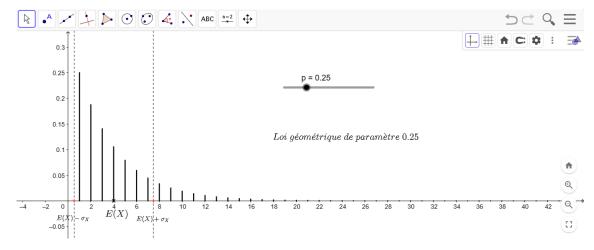
Expérience type: Une succession d'un nombre indéfini d'épreuves de Bernoulli identiques et indépendantes. On s'intéresse à X le nombre nécessaire d'épreuves pour obtenir le premier succès.

Exemple : On lance indéfiniment une pièce donnant Pile avec une probabilité $p \in]0,1[$ et on note X le nombre de lancer nécessaire pour obtenir Pile. (Autrement dit : X est le rang du premier Pile.)

Sans perte de généralité, on travaille sur l'exemple dans les questions suivantes.

- 1) Quelles sont les valeurs prises par X?
- 2) Pour $k \in \mathbb{N}$, exprimer l'événement (X = k) à l'aide des événements T_i : " le $i^{\text{ième}}$ lancer donne Pile".
- 3) En déduire que : Pour tout $k \in \mathbb{N}^*$, $P(X = k) = (1 p)^{k-1}p$
- 4) En déduire que X est une variable aléatoire discrète bien définie.
- 5) Montrer que X admet une espérance et $E(X) = \frac{1}{p}$. (Décrire une situation classique pour retenir ce résultat)
- 6) Montrer que X admet une variance et $V(X) = \frac{q}{p^2}$. (En notant : q = 1 p)
- 7) Montrer que : $\forall (k,n) \in \mathbb{N} \times \mathbb{N}^*, \quad P\Big([X=n+k] \, \big| \, [X>k] \Big) = P([X=n])$
- 8) Interpréter l'événement [X > k], puis le résultat de la question précédente.
- 9) Montrer que : $\forall (k,n) \in \mathbb{N} \times \mathbb{N}^*, \quad P\Big(\left[X>n+k\right] \big| \left[X>k\right]\Big) = P(\left[X>n\right])$
- 10) Ecrire une fonction Python qui prend en entrée pour arguments un réel p et qui simule la réalisation de X.

Si vous aviez le temps vous pourriez faire une animation avec géogébra.



Vérifiez la cohérence des résultats précédents avec cette représentation de la loi géométrique de paramètre $\frac{1}{4}$.

Loi de Poisson.

(Nombre d'occurrences d'un événement dans un intervalle fixé)

Situation type : On observe X le nombre d'occurrence 1 d'un événement sur un intervalle de temps (ou d'espace) avec les conditions suivantes :

Les réalisations de l'événement sont indépendantes les unes des autres.

La fréquence moyenne des réalisations de cet événement est constante.

On note λ cette constante réelle et strictement positive ².

Exemple. Le nombre de clients dans un magasin entre 10h et 13h est en moyenne de 4,5.

On suppose que des clients peuvent arriver à tout instant indépendamment de ce qui s'est passé avant.

Exemple type. Le nombre de réalisations de l'événement A sur un intervalle de temps [0,T] est en moyenne de λ . On suppose que les réalisations de A sont indépendantes les unes des autres.

Pour les premières questions on discrétise l'intervalle [0,T] en n intervalles de même amplitude 3 :

$$[0, T] \cup = [0, dt] \cup [dt, 2dt] \cup \cdots \cup [(n-1).dt, n.dt]$$

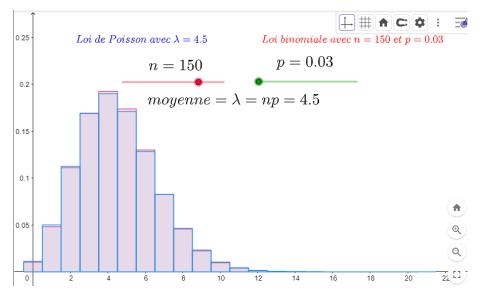
On fixe n suffisamment grand pour que sur chaque intervalle [k.dt, (k+1)dt] on n'observe zéro ou une réalisation de A.

L'expérience peut alors être vue comme la succession de n épreuves de Bernoulli identiques et indépendantes.

Le succès : "on observe A dans un intervalle de largeur dt". La probabilité du succès : p_n à déterminer.

- 1) En notant X_n le nombre d'intervalles où A se réalise, quelle est la loi de X_n ?
- 2) Quelle est l'espérance de X_n ?
- 3) Que vaut p_n si on veut que $E(X_n) = \lambda$?
- 4) Soient $\lambda \in \mathbb{R}_+^*$ et $k \in \mathbb{N}$, on note $(u_n)_{n \geqslant k}$ la suite définie par $u_n = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 \frac{\lambda}{n}\right)^{n-k}$,
 - a. Donner, pour k fixé, un équivalent simple de la suite $\binom{n}{k}_{n\in\mathbb{N}}$.
 - b. Déterminer, pour k fixé, la limite des suites suivantes $\left(\left(1-\frac{\lambda}{n}\right)^k\right)_{n\in\mathbb{N}^*}$ et $\left(\left(1-\frac{\lambda}{n}\right)^n\right)_{n\in\mathbb{N}^*}$
 - c. Pour k fixé, montrer que (u_n) converge vers un réel à déterminer.
- 5) Soit $\lambda \in \mathbb{R}_+^*$, on définit $X : \Omega \to \mathbb{R}$ par : $X(\Omega) = \mathbb{N}$ et $\forall k \in \mathbb{N}$, $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
 - a. Montrer qu'on définit bien ainsi une variable aléatoire discrète.
 - b. Montrer que X admet une espérance et que $E(X) = \lambda$
 - c. Montrer que X admet une variance et que $V(X) = \lambda$

Si vous aviez le temps vous pourriez faire une animation avec géogébra.



- 1. Occurrence d'un événement : son apparition dans le temps ou l'espace.
- 2. λ : Lambda la $11^{\text{ième}}$ lettre de l'alphabet grec
- 3. subdivision régulière de [0, T]