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Feuille Exo 12 : Etude d’un problème.

Ce problème est constitué de trois parties. Dans la partie I, on démontre des résultats qui pourront être utilisés
dans la partie II. La partie III est indépendante des deux autres.

Dans la suite p est un entier naturel supérieur ou égal à 3 .

On considère un repère orthonormal du plan (O, ı⃗, ȷ⃗) et le cercle unité C sur lequel on place dans le sens
trigonométrique p points équidistants A0, . . . , Ap−1 tels que A0 soit d’affixe 1.

Ainsi pour tout k ∈ [[0, p− 1]], Ak est le point d’affixe zk = e
2ikπ

p .

Pour p = 5, on a la représentation suivante :

I. Résultats préliminaires

1) On considère la matrice Dp =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . .
. . . 1

1 0 · · · · · · 0


∈ Mp(C).

a. Inverser les matrices D3 et D4.

b. Prouver que la matrice Dp est inversible et donner son inverse.

On pourra utiliser les résultats de la question précédente pour conjecturer l’inverse de Dp.

2) Soit f : Mp,1(C) → C ,

 x1

...
xp

 7−→
p∑

k=1

xk.

a. Prouver que f est une application C-linéaire.
b. La fonction f est-elle injective ?

c. La fonction f est-elle surjective ?

d. Déterminer la dimension du noyau de f .

3) Calculer

p−1∑
k=0

zk. Interpréter géométriquement le résultat obtenu.

4) Soit z un complexe non nul. Prouver que : zp = 1 ⇐⇒ ∃k ∈ Z : z = e
2ikπ

p .

On pourra mettre z sous forme exponentielle ou trigonométrique.

On admettra que l’équation zp = 1 possède p solutions distinctes : z0, z1, . . . , zp−1.



II. Étude d’un modèle de diffusion sur le cercle.

On considère l’expérience suivante : une particule est libre de se déplacer parmi les p points A0, A1, . . . , Ap−1.
Initialement la particule se situe sur le point A0 et, à chaque étape, on choisit de façon équiprobable de la
déplacer vers l’un de ses deux plus proches voisins.

Pour tout n ∈ N, on note Un la variable aléatoire réelle à valeurs dans [[0, p − 1]] et telle que l’emplacement
occupé à l’étape n soit AUn

.
La variable aléatoire U0 est donc constante à 0 et la variable aléatoire U1 est égale à 1 avec une probabilité 1/2
et à p− 1 avec une probabilité 1/2.
La variable U2 est à valeurs dans {2, 0, p− 2} et P (U2 = 2) = P (U2 = p− 2) = 1/4.

Pour tout n ∈ N, on note Xn =


P (Un = 0)
P (Un = 1)

...
P (Un = p− 1)

.

1) Déterminer une matrice Mp ∈ Mp(R) telle que, pour tout entier n, on ait

Xn+1 = MpXn.

Indication : une récurrence n’est pas nécessaire.

2) Soit n un entier. Donner sans justification l’expression de Xn en fonction de la matrice Mp et de n.

3) Vérifier que Mp =
1

2

(
Dp +D−1

p

)
.

4) On suppose ici que p = 3 et on admet que M3 =
1

2

 0 1 1
1 0 1
1 1 0

 et on note P =

−1 −1 1
1 0 1
0 1 1


a. Calculer M3P et montrer que P est inversible.

b. Remarquer que pour une matrice ∆ diagonale M3P = P∆. On donnera cette matrice ∆.

c. Montrer par récurrence sur n que pour tout n ∈ N, Mn
3 = P∆nP−1

d. Déterminer P−1.

e. Soit k ∈ [[0, 2]]. Déterminer la limite de P (Un = k) lorsque n tend vers +∞.

Interprétez le résultat obtenu.

5) On note Q la matrice suivante :

Q =



1 1 · · · · · · · · · 1

z0 z1
. . . zp−1

z20 z21
. . .

. . . z2p−1
...

...
. . .

. . .
. . .

...
...

...
. . .

. . . zp−2
p−1

zp−1
0 zp−1

1 · · · · · · zp−1
p−2 zp−1

p−1


.

Question Bonus : Montrer que Q est inversible.

6) Remarquer que pour une matrice ∆p diagonale DpQ = Q∆p. On donnera cette matrice ∆p.

7) En déduire, en utilisant la question II)3) ,

Mp = Q



1 0 0 · · · · · · 0

0 cos
(

2π
p

)
0 · · · 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 cos
(

2(p−1)π
p

)


Q−1

Dans toute la suite du sujet que p est impair. Il existe donc un entier q tel que p = 2q + 1

8) Déterminer pour k ∈ [[1, p− 1]], lim
n→+∞

cos(2kπ/p)n.

9) En déduire, pour tout ℓ ∈ [[0, p− 1]], la limite de P (Un = ℓ) lorsque n tend vers +∞.

On utilisera la relation obtenue à la question II. 3)

10) Interprétez le résultat obtenu.



III. Étude d’une variable aléatoire

1) On considère la fonction cotan qui à un réel x associe
cos(x)

sin(x)
.

a. Déterminer l’ensemble de définition D de cotan.

b. En remarquant que pour tout x ∈ D, on a cotan(x) = tan
(
π
2 − x

)
, tracer, sans justification, son

graphe sur [−2π, 2π] ∩D.

Pour tout k ∈ [[1, p− 1]],

on note Bk le point d’intersection de la droite (A0Ak) avec la droite d’équation x = −1.

2) Soit k ∈ [[1, p− 1]], montrer que l’ordonnée de Bk est 2 cotan

(
kπ

p

)
.

On considère une variable Wp suivant une loi uniforme sur [[1, p− 1]] et on s’intéresse à la variable aléatoire

Zp = 2 cotan

(
Wpπ

p

)
3) Calculer l’espérance de Z3 et l’espérance de |Z3|.
4) Déterminer l’espérance de Zp.

On pourra utiliser que pour tout x ∈ D, on a cotan(x) = − cotan(π − x).

On s’intéresse à la somme Sp =
1

p

q∑
k=1

cotan

(
kπ

p

)
· On rappelle que p = 2q + 1.

5) Exprimer E (|Zp|) en fonction de Sp et de p.

6) (Pour les 5/2) La fonction cotangente est-elle intégrable sur ]0, π/2] ?

7) Soit k ∈ [[1, q]]. En utilisant la monotonie de la fonction cotan sur ]0, π[, montrer que l’on a :

π

p
cotan

(
kπ

p

)
⩾

∫ (k+1)π/p

kπ/p

cotan(t)dt.

8) En déduire que :

Sp ⩾
1

π

(
ln

(
sin

(
(q + 1)π

p

))
− ln

(
sin

(
π

p

)))
.

9) Déterminer la limite de Sp puis celle de E (|Zp|) lorsque p tend vers +∞.

10) Donner un équivalent de ln
(
sin

(
π
p

))
lorsque p tend vers +∞.

11) Donner un équivalent de E (|Zp|) lorsque p tend vers +∞.

On pourra s’inspirer des questions précédentes pour encadrer E (|Zp|).

FIN DU SUJET


