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’ Correction du Devoir maison 4. ‘

(Equation différentielle linéaire du premier ordre, homogéne & coefficients constants.
La solution de ce probleme différentiel est de la forme x : ¢t — ce™  avec ¢ un réel a déterminer
et la condition initiale z(0) = zp permet de conclure :

’ La solution de (1) est la fonction  : t —» e’ ‘

(Ne pas négliger cette question qui évalue la compétence “représenter”)
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(Interprétation d’un modéle, d vous de réfléchir ... )
Le nombre de lievres ne cesse de croitre (une croissance exponentielle).
Ce modele est surement acceptable quand le nombre de lievres est petit (en fonction de ’environnement) ;

mais a partir d’un certain moment il n’est plus raisonnable, la nourriture risque de manquer, ’espace de vie
va devenir insuffisant ...

(Compréhension et interprétation d’un modéle)

dz
Tant que z(t) est négligeable devant K, on peut faire I’approximation T ~ rx et on revient au modele de

la premiere question et alors ’l’allure de la solution est celle donnée dans la question 1. (b). ‘

(Déterminer le signe d’une expression)

d d

diatc = %(K —x), on en déduit le tableau de signe de d—f en fonction de z > 0.
z |0 K +00
AN -
dt

x est une fonction continue donc avant de s’annuler la fonction prendrait une valeur dans I'intervalle [0, K],

mais alors T > 0 et ainsi x serait croissante. x ne peut pas s’annuler en étant toujours croissante.

| Pour tout t >0, (t) #0 |

Une autre réponse (pas dans l’esprit du sujet mais efficace sur cette question trés classique) :

d t
x est la solution d’une équation différentielle de la forme : d—f =a(t)r ou a:t—r ( — xl({)>
donc il existe un réel ¢ et une fonction A pour lesquels V¢ >0, z(t) = cexp(—A(t))

et comme z(0) # 0 on en déduit bien :

| Pour tout ¢ >0, x(f) #0 |




(d) (Calcul de la dérivée d’une fonction composée)

x est dérivable et ne s’annule pas sur [0; +o00[ donc z est dérivable sur [0; +o0],

20 = (-zm) 50

- z2(t) K
1 . .
et comme z(t) = =@ on obtient bien :
x
dz r
—=——rz
dr K

(€) (Equation différentielle linéaire du premier ordre & coefficients constants).
La solution de cxe probleme différentiel est de la forme z : t — ce™"" + Ve avec ¢ un réel a déterminer

et la condition initiale z(0) = zy permet de conclure :
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(f) (Manipuler et exploiter des expressions symboliques).
1 1
z(t) = —= et 2zy=— donc
x(t) xo

KQL‘O
(K —xg)e "t + xg

x(t) =

(g) (calcul de limite. Argumenter)

On sait que 7 >0 donc lim e =0 et ainsi lim z(t) = K
t——+oo t——+oo

(h) (Ne pas négliger cette question qui évalue la compétence “représenter”)

»

(i) (Interprétation d’un modéle)
Dans le modele (1) on considére que les ressources du milieu sont infinies et alors le nombre de lievre croit
exponentiellement.
Dans le modele (2) (équation logistique), en tenant compte de ressources limitées du milieu le nombre de
lievres tend vers une constante.
K est Deffectif de la population de lievres en situation d’équilibre. Capacité de charge du milieu.
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3. (Interprétation d’un modéle)
(a) S’il n’y a pas de lynx on retrouve le modele de la question 1) et le nombre de lievres croit de maniere
exponentielle.
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(b) S’il n’y a pas de lievre, le nombre de lynx vérifie d—i = —my donc ’ Ve >0, y(t)=yoe

Le nombre de lynx décroit de maniére exponentielle.

4. (Dérivée d’une composée. Changement de variable.)

d d
Z(s) = g:z:(t) et s=rt donc Z(s) = g:z: (;) ce qui entraine : d—i(s) = %d—? (;)

_ p _ p (s . . dy p dx
=Zy(t) et s=rt d == (7) t : _——(7)
e ry() et s=r onc g(s) ry . ce qui entraine ds( s) 2\
dx q dx qr  pqxy
— = rx—pzr = — -
dt pry r2dt T r2
<
dy  _ —my — qzy pdy _ _mpy  pery
dt r2 dt r2 r2
dzx _ __
— = I — Iy
en posant |a = m on obtient bien : Z‘f
T
2 = —ag+iy
ds

5.(a) (Résolution d’un systéme. (ici non linaire).)
Pour (z,y) € Ri,

r —xzy = 0
0

{x—xy = 0
—
0 r — ay =

—ay +xy = {
{ ay — ay®? = 0
<:> J—
(

y(1 = 0 car a # 0
prmd a/y

!

— y=0etxz=0) ou (y=letzx=aqa)

[Les points d’équilibre sont (0,0) et (a,1) |

(b) (Interprétation d’un modéle)
Ces deux points d’équilibre représentent des situations ot pendant un petit intervalle de temps le nombre
de lievres et le nombre de lynx n’évolue pas.

(¢) (Interprétation d’un modéle)
(0,0) est la situation ou les lievre et les lynx ont disparu.

(1,a) il y a un équilibre entre la croissance des lievres et la prédation de lynx.

6. (Etude d’une fonction)

(a) f. est dérivable sur ]0; +oo[ et Yu >0, fl(u)=1-— 5 S ; ‘
on peut alors dresser le tableau de variations de f. :
U 0 c +00
f'(w) - 0 +
+00 “+00

fC(C)




Limites de fe(u) = u — cln(u) (pas demandées ici)

e En 0: lim In(u) = —oco donc  lim fe(u) = 400
u—0 u—0

oEn+oo:fc(U)ZU(1fcM) ot lim 2

=0 croissance comparée donc lim u) =
u u—+00 u ( P ) Uu——+00 fc( )
—+00

Cette étude montre que f. admet un minimum en ¢ et f.(c) = ¢(1 — In(c)) donc

[Vu>0, f(u)>c(l—In(0))]

(b) e f. est strictement décroissante sur ]0,¢] donc Vu €]0, ], fe(uw) # fe(c)
o f. est strictement croissante sur [¢;+oo] donc Vu €¢;+o0], fe(u) # fe(c)
epour u=c¢, fy(c)=c(1—-1n(c))

donc

[ fe(u) = c(1 —In(c)) si, et seulement si, u=c |

(c) fe est continue sur J0,c] et M € [fe(c); lién fe| donc il existe b €]0, ] tel que fo(b) = M
de méme f, est continue sur [c; +oo[ et M € [fo(c); Em fe[ donc il existe B € [c; +oc] tel que fo(B) = M
o
On en déduit :

u 0 b c B 400
f'(u) - 0 +
—+00 +00
/
Je(c)

et ainsi pour ces deux nombres bet B ona : 0<b<< Bet

] fe(u) < M si, et seulement si, b<u< B ‘

7. On remarque que : V(z,y) = fo(z) + f1(y)
(a) i. On remarque que : V(x,y) = fo(x) + f1(y) donc (en utilisant 6.(a) ) on obtient :
Vi(z,y) = fa(z) + f1(1) et V(z,y) > fala) + fr(y)

on a bien pour tout s > 0,
| fa(a(s)) < V(x(s),y(s) =1 et fi(y(s)) < V(z(s),y(s)) —a(l —In(a)) |

ii. On note g: s+ V(z(s),y(s)) = =z(s) —aln(z(s)) + y(s) — In(y(s))

/ /
g est dérivable sur [0;+o00] et ¢'(s) =2'(s) — aw +y'(s) — y((s))
y(s

(s)

En utilisant (5) il vient :

76 = )=o) x (1= 255 ) + (Canls) + o) < (1- )

x(s) y(s)
= x(s) —x(s)y(s) — a+ay(s) —ay(s) + z(s)y(s) + a — a(s)
=0

g est dérivable sur un intervalle et sa dérivée est nulle donc g est constante.

| V(x(s),y(s)) reste constante pour tout s >0 |

iii. En prenant M = V(z(s),y(s)) — 1, on sait que V(z(s),y(s)) — 1 = fa(z(s)) = a(1 — In(a))
donc (question 6. (¢)) il existe b, et B, vérifiant 0 < bz < Bx et tels que :
fo(u) < M si, et seulement si, b, < u < B,
et comme f,(z(s)) < M, on a bien

[ b < a(s) < B, |




On raisonne de méme en posant M = V(z(s),y(s)) — a(l — In(a)) pour monter qu'il existe b, et B,
vérifiant 0 < by < By et tels que :

(8, <y <5,]

(b)
Viz,y) = falo)+ fiy)
> fala)+ f1(1) d’apres 6. (a)

’ Pour tout (z,y) € RY, V(z,y) >a(l—1In(a)) +1 ‘

’ Pour tout (z,y) €R%, V(z,y)=a(l-1In(a))+1 <= (z,y) = (a,1) ‘

(c) i Pourtouts>0, 0<b, <x(s)<B, et 0<by, <y(s)<By,donc

’ Les populations ne peuvent pas s’éteindre et ne peuvent pas devenir arbitrairement grandes‘

ii. Si (2(0),y(0)) = (a, 1) alors leffectif des deux populations est constant.
En revanche si on part d’une autre situation on n’atteindra jamais ce point d’équilibre, car V' (z(s), y(s))
est constant.

’ Les deux populations ne s’arréteront jamais d’évoluer. ‘

iii. (Interprétation d’un modéle. )
L’effectif des deux populations restent bornées et strictement positives.
Si on n’est pas au point d’équilibre elles évoluent constamment.

Remarque du correcteur : On pourrait montrer que ces effectifs décrivent une courbe fermée, mais nous
ne l’avons pas mis en €évidence ici

8. Pour k£ € N,
On remarque que :

Tpy1 — Tk = h(Te — TRyYk) 5, Yks1 — Yk = M(—ayr + Tpyr)

et
a
k+1 _ 14+ h(1 -y, Ye+1 _ 1+ h(—a+ 1)
Tp Yk
Vg1 — Uk = Ty — aIn(@pg1) + Y1 — (Y1) — (xk —aln(zg) + yr — ln(yk))

= h(zgx — zryr) — aln(l + A(1 — yx)) + h(—ayx + zryr) — In(1 + h(—a + zx))

| Pour tout k €N, vpq1 — v = h(we — ayr) —aln(l + h(1 — yi)) — In(1 + h(—a + z1))|

9.(a) Oronsait que : Vo > -1, z—In(1+2) >0 (Concavité de la fonction logarithme népérien)

donc

h(zk —ayr) —aln(l + h(1 —yx)) — In(1 + h(—a + xx))
h(ze — ayr) — ah(1 — yx) — h(—a + )
0 (magique ?)

V41 — Vg

VoWV

’ Pour tout k € N, w41 —vg > 0‘




(b) (A cette question je n’ai pas trouvé plus simple)
On remarque que pour tout k € N, v —vp = @(h(—a+zr))+ap(h(l—yx)) en posant p(z) = z—In(1+x),
Vk+1 — Uk est ainsi la somme de deux termes positifs donc
Vg1 — Vg =0 <= @(h(—a+zr)) =0 et p(h(l—yg)) =0
On sait aussi que : Vo > —1, ¢(z) =0 <= =0 (Stricte concavité de la fonction logarithme népérien)

donc vgy1 —vpy =0 <= zp=a et yr =1 et ainsi on a bien :

’ Vk €N, vkr1 —vp =0  si, et seulement si, la suite (2, yr) est constante.

10. Nous avons dans la partie 2. que les populations n’arréteront pas d’évoluer et que pour tout s = 0, V' (z(s), y(s))
reste constante.
Cette propriété n’est plus vérifiée quand on discrétise le probléeme par la méthode d’Euler,

’ La méthode d’Euler n’est pas satisfaisante pour I’étude de ce modele.

11.(a) import math as m
(b) liste(1, 0.2) renvoie la liste [0, 0.2, 0.4, 0.6, 0.8, 1.0]
liste(1, 0.3) renvoie la liste [0, 0.3, 0.6, 0.9]

De fagon générale dans la fonction on part de la liste L=[0] et on lui ajoute les flottants h, 2h , ... , nh tels
que nh est le dernier multiple de h inférieure ou égale a T'.

T
Autrement dit : elle renvoie [0, h, 2h, ..., nh] avec n = {hJ ou |z]| est la partie entiere de x.

L

100 | ke [[0,2000]} et Ls contient les nombres {exp (£5) | k € [0,2000] }

(c) Lt contient les nombres {

’ La fonction mystere permet de tracer la fonction ¢ — e"* sur I'intervalle [0, 20]‘

12.(a) i. L[1] vaut [7]
ii. L{0][1] vaut 1
iii. len(L) vaut 3
iv. apres l'instruction L.append(9.75), len(L) vaut [[3, 1], [7], [1, 9, 8, 0], 9.75]
(b) def lapin(x, y):
return x - X*y

def lynx(x, y):
return -axy + Xxy

(c) def resol_1(x0 , yO , T, h):
x, y = x0, y0

t =0
Lx = [x]
Ly = [y]
Lt = [t]
while t+h <= T:
t +=h
Lt.append(t)
X, y = x + hxlapin(x,y), y + hxlynx(x, y) lignes a écrire sur la copie

Lx.append (x)
Ly.append (y)

return [Lt , Lx , Lyl

Pour ceux qui ne connaissent pas ’affectation simultanée :
t +=h
Lt.append(t)
aux = x + h¥lapin(x,y)
y =y + h*xlynx(x, y)
X = aux
Lx.append(x)
Ly.append(y)




13.

(d) e La premiere ligne affecte a la variable L une liste contenant trois listes :
L[0] contenant les nombres {kh | k € [0,2000]}
L[1] contenant les nombres {z;, | k& € [0,2000]}
L[2] contenant les nombres {yx | k& € [0,2000]}

e La ligne plt.plot(L[0], L[1]) trace la courbe du nombre de liévres en fonction du temps.

e La ligne plt.plot(L[0], L[2]) trace la courbe du nombre de lynx en fonction du temps.

(e) x0 = 1et y0 = 0.5 permettent de distinguer les deux courbes.
La courbe en pointillé représente le nombre de lynx (a un coefficient multiplicatif prés) en fonction du temps.
L’autre courbe représente le nombre de lievres (a un coefficient multiplicatif prés) en fonction du temps.

(f) Dans la fonction suivante Lv contient les nombres {vy | k € [0,2000]}

def trace_v_1 ():

L = resol_1(x0 , yO , T, h)

Lv = [

for k in range(len(L[1])):
v = fonctionV( L[1][k], L[2][k] )
Lv.append(v)

plt.plot(L[0], Lv)

plt.show ()

(a) def resol_2(x0 , yO , T, h):
x, y = x0, y0
u, w = x + hxlapin(x,y), y + h*lynx(x, y)

t =0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:
t += h

Lt.append(t)
u = x + hxlapin(x,y)
w =7y + hx( —a*xy + xxy ) # ici il y avait une erreur d’énoncé
aux_x = x + h/2*lapin(x,y)+h/2xlapin(u, w)
y =y + h/2+1lynx(x,y)+h/2*1lynx(u, w)
X = aux_x
Lx.append(x)
Ly.append(y)
return [Lt , Lx , Lyl

(b) 1l suffit de changer la ligne L = resol 1(x0 , yO , T, h) par L = resol 2(x0 , yO , T, h)

(¢) On a montré dans la partie 2) que la suite (vg) doit étre constante ce qui n’est pas vérifié avec la méthode
d’Euler, en revanche avec la méthode de Heun on constate que la suite est quasi-constante.

14. (Note du correcteur : On pourrait faire un cours complet sur le théme de cette question!! )

15.

On constate que la méthode d’Euler entraine une divergence de la solution numérique, ici on 'observe avec la
croissance de la fonction V.

La méthode de Heun semble améliorer cette méthode numérique car la fonction V reste (presque) constante.
En BCPST on observe ce méme phénomene en utilisant la fonction odeint pour étudier les oscillations du
pendule simple en physique. (Pour ceuz qui sont allés jusque la vous pouvez aller voir la feuille d’info 14 que
noujs n’avons pas eu le temps de faire en classe)

(Interprétation d’un modéle )

L’effectifs des deux populations présentent des oscillations périodiques. Le nombres de lievres augmente en
premier, ce qui fait croitre le nombre de Lynx. Le taux de prédation devient trop grand cela fait chuter le
nombre de lievre ce qui fait chuter a son tour le nombre de lynx.



import matplotlib.pyplot as plt
import math as m

Avec la méthode d'Euler Avec la méthode de Heun

plt.close(’all’) 2.5 1
a=2 2.5
x0 =1 2.0 1
yo = 0.5 2.0
T = 20 15 4
h=0.01 1.5
def lapin(x, y): 1.0 - 1.0 1

return x - X*y

0.5 0.5
def lynx(x, y):
T T T T T T T T T
return -axy + xky 1 2 3 4 1.0 1.5 2.0 2.5 3.0 3.5

def resol_1(x0 , yO , T, h):

x, y = x0, yo

t=0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:
t +=h
Lt.append(t)
X, ¥y = x + hxlapin(x,y), y + hxlynx(x, y)
Lx.append(x)
Ly.append(y)

return [Lt , Lx , Lyl

def resol_2(x0 , yO , T, h):

x, y = x0, yO

t=0

Lx = [x]

Ly = [yl

Lt = [t]

while t+h <= T:
t += h
Lt.append(t)
u = x + h¥lapin(x,y)
w =y + hx( —axy + xxy ) # ici il y avait une erreur d’énoncé dans le sujet original
aux_x = x + h/2%lapin(x,y)+h/2*lapin(u, w)
y =y + h/2%1lynx(x,y)+h/2*1lynx(u, w)
X = aux_x

Lx.append(x)
Ly.append(y)
return [Lt , Lx , Lyl

def trace_phase_1():
L = resol_1(x0 , yO , T, h)
plt.plot(L[1], L[2])
plt.title("Avec la méthode d’Euler")
plt.show()

def trace_phase_2():
L = resol_2(x0 , yO , T, h)
plt.plot(L[1], L[2])
plt.title("Avec la méthode de Heun")
plt.show()

plt.figure(’Figure 4 : Prédateurs en fonction des Proies’, figsize = (10,3))
plt.subplot(121)
trace_phase_1()
plt.subplot(122)
trace_phase_2()



