
BCPST 2A 2025/2026

Correction du Devoir maison 4.

1.(a) (Equation différentielle linéaire du premier ordre, homogène à coefficients constants.

La solution de ce problème différentiel est de la forme x : t 7−→ cert avec c un réel à déterminer

et la condition initiale x(0) = x0 permet de conclure :

La solution de (1) est la fonction x : t 7−→ x0e
rt

(b) (Ne pas négliger cette question qui évalue la compétence ”représenter”)

(c) (Interprétation d’un modèle, à vous de réfléchir ... )

Le nombre de lièvres ne cesse de crôıtre (une croissance exponentielle).

Ce modèle est surement acceptable quand le nombre de lièvres est petit (en fonction de l’environnement) ;

mais à partir d’un certain moment il n’est plus raisonnable, la nourriture risque de manquer, l’espace de vie
va devenir insuffisant ...

2.(a) (Compréhension et interprétation d’un modèle)

Tant que x(t) est négligeable devant K, on peut faire l’approximation
dx

dt
≈ rx et on revient au modèle de

la première question et alors l’allure de la solution est celle donnée dans la question 1. (b).

(b) (Déterminer le signe d’une expression)

dx

dt
=

rx

K
(K − x), on en déduit le tableau de signe de

dx

dt
en fonction de x ⩾ 0.

x 0

0

K +∞
dx

dt
+ 0 −

(c) x est une fonction continue donc avant de s’annuler la fonction prendrait une valeur dans l’intervalle [0,K],

mais alors
dx

dt
⩾ 0 et ainsi x serait croissante. x ne peut pas s’annuler en étant toujours croissante.

Pour tout t > 0, x(t) ̸= 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Une autre réponse (pas dans l’esprit du sujet mais efficace sur cette question très classique) :

x est la solution d’une équation différentielle de la forme :
dx

dt
= a(t)x où a : t 7→ r

(
1− x(t)

K

)
donc il existe un réel c et une fonction A pour lesquels ∀t > 0, x(t) = c exp(−A(t))

et comme x(0) ̸= 0 on en déduit bien :

Pour tout t > 0, x(t) ̸= 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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(d) (Calcul de la dérivée d’une fonction composée)

x est dérivable et ne s’annule pas sur [0;+∞[ donc z est dérivable sur [0;+∞[,

dz

dt
(t) =

(
− 1

x2(t)

)
dx

dt
(t)

=

(
− 1

x2(t)

)(
rx(t)

(
1− x(t)

K

))
= − r

x(t)
+

r

K

et comme z(t) =
1

x(t)
on obtient bien :

dz

dr
=

r

K
− rz

(e) (Equation différentielle linéaire du premier ordre à coefficients constants).

La solution de cxe problème différentiel est de la forme z : t 7−→ ce−rt +
1

K
avec c un réel à déterminer

et la condition initiale z(0) = z0 permet de conclure :

z : t 7−→
(
z0 −

1

K

)
e−rt +

1

K

(f) (Manipuler et exploiter des expressions symboliques).

z(t) =
1

x(t)
et z0 =

1

x0
donc

x(t) =
Kx0

(K − x0)e−rt + x0

(g) (calcul de limite. Argumenter)

On sait que r > 0 donc lim
t→+∞

e−rt = 0 et ainsi lim
t→+∞

x(t) = K

(h) (Ne pas négliger cette question qui évalue la compétence ”représenter”)

(i) (Interprétation d’un modèle)

Dans le modèle (1) on considère que les ressources du milieu sont infinies et alors le nombre de lièvre croit
exponentiellement.

Dans le modèle (2) (équation logistique), en tenant compte de ressources limitées du milieu le nombre de
lièvres tend vers une constante.

K est l’effectif de la population de lièvres en situation d’équilibre. Capacité de charge du milieu.
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3. (Interprétation d’un modèle)

(a) S’il n’y a pas de lynx on retrouve le modèle de la question 1) et le nombre de lièvres croit de manière
exponentielle.

(b) S’il n’y a pas de lièvre, le nombre de lynx vérifie
dy

dt
= −my donc ∀t > 0, y(t) = y0e

−mt

Le nombre de lynx décroit de manière exponentielle.

4. (Dérivée d’une composée. Changement de variable.)

x̄(s) =
q

r
x(t) et s = rt donc x̄(s) =

q

r
x
(s
r

)
ce qui entraine :

dx̄

ds
(s) =

q

r2
dx

dt

(s
r

)
ȳ(s) =

p

r
y(t) et s = rt donc ȳ(s) =

p

r
y
(s
r

)
ce qui entraine :

dȳ

ds
(s) =

p

r2
dx

dt

(s
r

)


dx

dt
= rx− pxy

dy

dt
= −my − qxy

⇐⇒


q

r2
dx

dt
=

qx

r
− pqxy

r2

p

r2
dy

dt
= −mpy

r2
+

pqxy

r2

en posant a =
m

r
on obtient bien :


dx̄

ds
= x̄ − x̄ȳ

dȳ

ds
= −aȳ + x̄ȳ

5.(a) (Résolution d’un système. (ici non linaire).)

Pour (x, y) ∈ R2
+,

{
x − xy = 0

−ay + xy = 0
⇐⇒

{
x − xy = 0

x − ay = 0

⇐⇒

{
ay − ay2 = 0

x = ay

⇐⇒

{
y(1− y) = 0 car a ̸= 0

x = ay

⇐⇒ ( y = 0 et x = 0) ou (y = 1 et x = a)

Les points d’équilibre sont (0, 0) et (a, 1)

(b) (Interprétation d’un modèle)

Ces deux points d’équilibre représentent des situations où pendant un petit intervalle de temps le nombre
de lièvres et le nombre de lynx n’évolue pas.

(c) (Interprétation d’un modèle)

(0, 0) est la situation où les lièvre et les lynx ont disparu.

(1, a) il y a un équilibre entre la croissance des lièvres et la prédation de lynx.

6. (Etude d’une fonction)

(a) fc est dérivable sur ]0;+∞[ et ∀u > 0, f ′
c(u) = 1− c

u
=

u− c

u
on peut alors dresser le tableau de variations de fc :

�
�
�

�
��3Q

Q
Q

Q
QQs

u 0 +∞c

0− +f ′(u)

f

fc(c)

+∞ +∞
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Limites de fc(u) = u− c ln(u) (pas demandées ici)

• En 0 : lim
u→0

ln(u) = −∞ donc lim
u→0

fc(u) = +∞

• En +∞ : fc(u) = u

(
1− c

ln(u)

u

)
et lim

u→+∞

ln(u)

u
= 0 (croissance comparée) donc lim

u→+∞
fc(u) =

+∞

Cette étude montre que fc admet un minimum en c et fc(c) = c(1− ln(c)) donc

∀u > 0, fc(u) ⩾ c(1− ln(c))

(b) • fc est strictement décroissante sur ]0, c] donc ∀u ∈]0, c[, fc(u) ̸= fc(c)

• fc est strictement croissante sur [c; +∞[ donc ∀u ∈]c; +∞[, fc(u) ̸= fc(c)

• pour u = c, fu(c) = c(1− ln(c))

donc

fc(u) = c(1− ln(c)) si, et seulement si, u = c

(c) fc est continue sur ]0, c] et M ∈
[
fc(c) ; lim

0
fc
[
donc il existe b ∈]0, c] tel que fc(b) = M

de même fc est continue sur [c; +∞[ et M ∈
[
fc(c) ; lim

+∞
fc
[
donc il existe B ∈ [c; +∞[ tel que fc(B) = M

On en déduit :

�
�
�

�
��3Q

Q
Q

Q
QQs

u 0 +∞cb B

M M

0− +f ′(u)

f

fc(c)

+∞ +∞

et ainsi pour ces deux nombres b et B on a : 0 ⩽ b ⩽ B et

fc(u) ⩽ M si, et seulement si, b ⩽ u ⩽ B

7. On remarque que : V (x, y) = fa(x) + f1(y)

(a) i. On remarque que : V (x, y) = fa(x) + f1(y) donc (en utilisant 6.(a) ) on obtient :

V (x, y) ⩾ fa(x) + f1(1) et V (x, y) ⩾ fa(a) + f1(y)

on a bien pour tout s ⩾ 0,

fa(x(s)) ⩽ V (x(s), y(s))− 1 et f1(y(s)) ⩽ V (x(s), y(s))− a(1− ln(a))

ii. On note g : s 7−→ V (x(s), y(s)) = x(s)− a ln(x(s)) + y(s)− ln(y(s))

g est dérivable sur [0;+∞[ et g′(s) = x′(s)− a
x′(s)

x(s)
+ y′(s)− y′(s)

y(s)

En utilisant (5) il vient :

g′(s) = (x(s)− x(s)y(s))×
(
1− a

x(s)

)
+ (−ay(s) + x(s)y(s))×

(
1− 1

y(s)

)
= x(s)− x(s)y(s)− a+ ay(s)− ay(s) + x(s)y(s) + a− x(s)

= 0

g est dérivable sur un intervalle et sa dérivée est nulle donc g est constante.

V (x(s), y(s)) reste constante pour tout s ⩾ 0

iii. En prenant M = V (x(s), y(s))− 1, on sait que V (x(s), y(s))− 1 ⩾ fa(x(s)) ⩾ a(1− ln(a))

donc (question 6. (c)) il existe bx et Bx vérifiant 0 ⩽ bx ⩽ Bx et tels que :

fa(u) ⩽ M si, et seulement si, bx ⩽ u ⩽ Bx

et comme fa(x(s)) ⩽ M , on a bien

bx ⩽ x(s) ⩽ Bx

4



On raisonne de même en posant M = V (x(s), y(s)) − a(1 − ln(a)) pour monter qu’il existe by et By

vérifiant 0 ⩽ by ⩽ By et tels que :

by ⩽ y(s) ⩽ By

(b)

V (x, y) = fa(x) + f1(y)

⩾ fa(a) + f1(1) d’après 6. (a)

Pour tout (x, y) ∈ R2
+, V (x, y) ⩾ a (1− ln(a)) + 1

V (x, y) = a(1− ln(a)) + 1 ⇐⇒ (fa(x)− fa(a)) + (f1(y)− f1(1)) = 0

⇐⇒

{
fa(x)− fa(a) = 0

f1(y)− f1(1) = 0
car fa(x)− fa(a) ⩾ 0 et f1(y)− f1(1) ⩾ 0

⇐⇒

{
x = a

y = 1
d’après 6. (b)

Pour tout (x, y) ∈ R2
+, V (x, y) = a (1− ln(a)) + 1 ⇐⇒ (x, y) = (a, 1)

(c) i. Pour tout s ⩾ 0, 0 < bx ⩽ x(s) ⩽ Bx et 0 < by ⩽ y(s) ⩽ By donc

Les populations ne peuvent pas s’éteindre et ne peuvent pas devenir arbitrairement grandes

ii. Si (x(0), y(0)) = (a, 1) alors l’effectif des deux populations est constant.

En revanche si on part d’une autre situation on n’atteindra jamais ce point d’équilibre, car V (x(s), y(s))
est constant.

Les deux populations ne s’arrêteront jamais d’évoluer.

iii. (Interprétation d’un modèle. )

L’effectif des deux populations restent bornées et strictement positives.

Si on n’est pas au point d’équilibre elles évoluent constamment.

Remarque du correcteur : On pourrait montrer que ces effectifs décrivent une courbe fermée, mais nous
ne l’avons pas mis en évidence ici

8. Pour k ∈ N,
On remarque que :

xk+1 − xk = h(xk − xkyk) , yk+1 − yk = h(−ayk + xkyk)

et
xk+1

xk
= 1 + h(1− yk) ,

yk+1

yk
= 1 + h(−a+ xk)

vk+1 − vk = xk+1 − a ln(xk+1) + yk+1 − ln(yk+1)−
(
xk − a ln(xk) + yk − ln(yk)

)
= h(xk − xkyk)− a ln(1 + h(1− yk)) + h(−ayk + xkyk)− ln(1 + h(−a+ xk))

Pour tout k ∈ N, vk+1 − vk = h(xk − ayk)− a ln(1 + h(1− yk))− ln(1 + h(−a+ xk))

9.(a) Or on sait que : ∀x > −1, x− ln(1 + x) ⩾ 0 (Concavité de la fonction logarithme népérien)

donc

vk+1 − vk = h(xk − ayk)− a ln(1 + h(1− yk))− ln(1 + h(−a+ xk))

⩾ h(xk − ayk)− ah(1− yk)− h(−a+ xk)

⩾ 0 (magique ?)

Pour tout k ∈ N, vk+1 − vk ⩾ 0
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(b) (A cette question je n’ai pas trouvé plus simple)

On remarque que pour tout k ∈ N, vk+1−vk = φ(h(−a+xk))+aφ(h(1−yk)) en posant φ(x) = x−ln(1+x),

vk+1 − vk est ainsi la somme de deux termes positifs donc

vk+1 − vk = 0 ⇐⇒ φ(h(−a+ xk)) = 0 et φ(h(1− yk)) = 0

On sait aussi que : ∀x > −1, φ(x) = 0 ⇐⇒ x = 0 (Stricte concavité de la fonction logarithme népérien)

donc vk+1 − vk = 0 ⇐⇒ xk = a et yk = 1 et ainsi on a bien :

∀k ∈ N, vk+1 − vk = 0 si, et seulement si, la suite (xk, yk) est constante.

10. Nous avons dans la partie 2. que les populations n’arrêteront pas d’évoluer et que pour tout s ⩾ 0, V (x(s), y(s))
reste constante.

Cette propriété n’est plus vérifiée quand on discrétise le problème par la méthode d’Euler,

La méthode d’Euler n’est pas satisfaisante pour l’étude de ce modèle.

11.(a) import math as m

(b) liste(1, 0.2) renvoie la liste [0, 0.2, 0.4, 0.6, 0.8, 1.0]

liste(1, 0.3) renvoie la liste [0, 0.3, 0.6, 0.9]

De façon générale dans la fonction on part de la liste L=[0] et on lui ajoute les flottants h, 2h , ... , nh tels
que nh est le dernier multiple de h inférieure ou égale à T .

Autrement dit : elle renvoie [0, h, 2h, ..., nh] avec n =

⌊
T

h

⌋
où ⌊x⌋ est la partie entière de x.

(c) Lt contient les nombres

{
k

100
| k ∈ [[0, 2000]]

}
et Ls contient les nombres

{
exp

(
kr
100

)
| k ∈ [[0, 2000]]

}
La fonction mystere permet de tracer la fonction t 7−→ ert sur l’intervalle [0, 20]

12.(a) i. L[1] vaut [7]

ii. L[0][1] vaut 1

iii. len(L) vaut 3

iv. après l’instruction L.append(9.75), len(L) vaut [[3, 1], [7], [1, 9, 8, 0], 9.75]

(b) def lapin(x, y):

return x - x*y

def lynx(x, y):

return -a*y + x*y

(c) def resol_1(x0 , y0 , T, h):

x, y = x0, y0

t = 0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:

t += h

Lt.append(t)

x, y = x + h*lapin(x,y), y + h*lynx(x, y)

Lx.append(x)

Ly.append(y)

lignes à écrire sur la copie

return [Lt , Lx , Ly]

Pour ceux qui ne connaissent pas l’affectation simultanée :

t += h

Lt.append(t)

aux = x + h*lapin(x,y)

y = y + h*lynx(x, y)

x = aux

Lx.append(x)

Ly.append(y)
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(d) • La première ligne affecte à la variable L une liste contenant trois listes :

L[0] contenant les nombres {kh | k ∈ [[0, 2000]]}
L[1] contenant les nombres {xk | k ∈ [[0, 2000]]}
L[2] contenant les nombres {yk | k ∈ [[0, 2000]]}

• La ligne plt.plot(L[0], L[1]) trace la courbe du nombre de lièvres en fonction du temps.

• La ligne plt.plot(L[0], L[2]) trace la courbe du nombre de lynx en fonction du temps.

(e) x0 = 1 et y0 = 0.5 permettent de distinguer les deux courbes.

La courbe en pointillé représente le nombre de lynx (à un coefficient multiplicatif près) en fonction du temps.

L’autre courbe représente le nombre de lièvres (à un coefficient multiplicatif près) en fonction du temps.

(f) Dans la fonction suivante Lv contient les nombres {vk | k ∈ [[0, 2000]]}

def trace_v_1 ():

L = resol_1(x0 , y0 , T, h)

Lv = []

for k in range(len(L[1])):

v = fonctionV( L[1][k], L[2][k] )

Lv.append(v)

plt.plot(L[0], Lv)

plt.show ()

13.(a) def resol_2(x0 , y0 , T, h):

x, y = x0, y0

u, w = x + h*lapin(x,y), y + h*lynx(x, y)

t = 0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:

t += h

Lt.append(t)

u = x + h*lapin(x,y)

w = y + h*( -a*y + x*y ) # ici il y avait une erreur d’énoncé

aux_x = x + h/2*lapin(x,y)+h/2*lapin(u, w)

y = y + h/2*lynx(x,y)+h/2*lynx(u, w)

x = aux_x

Lx.append(x)

Ly.append(y)

return [Lt , Lx , Ly]

(b) Il suffit de changer la ligne L = resol 1(x0 , y0 , T, h) par L = resol 2(x0 , y0 , T, h)

(c) On a montré dans la partie 2) que la suite (vk) doit être constante ce qui n’est pas vérifié avec la méthode
d’Euler, en revanche avec la méthode de Heun on constate que la suite est quasi-constante.

14. (Note du correcteur : On pourrait faire un cours complet sur le thème de cette question ! ! )

On constate que la méthode d’Euler entraine une divergence de la solution numérique, ici on l’observe avec la
croissance de la fonction V .

La méthode de Heun semble améliorer cette méthode numérique car la fonction V reste (presque) constante.

En BCPST on observe ce même phénomène en utilisant la fonction odeint pour étudier les oscillations du
pendule simple en physique. (Pour ceux qui sont allés jusque là vous pouvez aller voir la feuille d’info 14 que
noujs n’avons pas eu le temps de faire en classe)

15. (Interprétation d’un modèle )

L’effectifs des deux populations présentent des oscillations périodiques. Le nombres de lièvres augmente en
premier, ce qui fait croitre le nombre de Lynx. Le taux de prédation devient trop grand cela fait chuter le
nombre de lièvre ce qui fait chuter à son tour le nombre de lynx.
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import matplotlib.pyplot as plt

import math as m

plt.close(’all’)

a = 2

x0 = 1

y0 = 0.5

T = 20

h = 0.01

def lapin(x, y):

return x - x*y

def lynx(x, y):

return -a*y + x*y

def resol_1(x0 , y0 , T, h):

x, y = x0, y0

t = 0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:

t += h

Lt.append(t)

x, y = x + h*lapin(x,y), y + h*lynx(x, y)

Lx.append(x)

Ly.append(y)

return [Lt , Lx , Ly]

def resol_2(x0 , y0 , T, h):

x, y = x0, y0

t = 0

Lx = [x]

Ly = [y]

Lt = [t]

while t+h <= T:

t += h

Lt.append(t)

u = x + h*lapin(x,y)

w = y + h*( -a*y + x*y ) # ici il y avait une erreur d’énoncé dans le sujet original

aux_x = x + h/2*lapin(x,y)+h/2*lapin(u, w)

y = y + h/2*lynx(x,y)+h/2*lynx(u, w)

x = aux_x

Lx.append(x)

Ly.append(y)

return [Lt , Lx , Ly]

def trace_phase_1():

L = resol_1(x0 , y0 , T, h)

plt.plot(L[1], L[2])

plt.title("Avec la méthode d’Euler")

plt.show()

def trace_phase_2():

L = resol_2(x0 , y0 , T, h)

plt.plot(L[1], L[2])

plt.title("Avec la méthode de Heun")

plt.show()

plt.figure(’Figure 4 : Prédateurs en fonction des Proies’, figsize = (10,3))

plt.subplot(121)

trace_phase_1()

plt.subplot(122)

trace_phase_2()
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