
BCPST 2A 2025/2026

Correction de la feuille_Cours_7 : Éléments propres d’un endomorphisme ou d’une matrice.

Les parties encadrées rappel de cours ne sont pas nécessaires dans une copie bien rédigée.

Ex 1 : λ valeur propre ⇐⇒ rg(M − λIn) < n

rg(M − (−1)I3) = rg

1 1 1
1 1 1
1 1 1

 = 1 < 3 donc −1 est une valeur propre de M

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remarque : rg(M − (−1)I3) = 1 donc le théorème du rang donne dim(E−1(M)) = 2

dim(Eλ(M)) + rg(M − λIn) = n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

X ∈ Eλ(M)) ⇐⇒ (M − λIn)X = 0n×1

Soit X =

x
y
z

 ∈M3,1(R),

X ∈ E−1(M)) ⇐⇒

1 1 1
1 1 1
1 1 1

x
y
z

 =

0
0
0


⇐⇒ x+ y + z = 0

⇐⇒ X ∈ Vect <

 1
−1
0

 ,

 1
0
−1


︸ ︷︷ ︸

libre

>

 1
−1
0

 ,

 1
0
−1

 est une base de E−1(M))

Ex 2 : λ valeur propre ⇐⇒ rg(M − λIn) < n

λ ∈ Sp(M1) ⇐⇒ rg(M1 − λI2) < 2 (ou M1 − λI2 non inversible)

⇐⇒
∣∣∣∣−λ 2
−1 −λ

∣∣∣∣ = 0

⇐⇒ λ2 + 2 = 0

donc Si K = R alors Sp(M1) = ∅ et Si K = C alors Sp(M1) = {−i
√
2; i
√
2}

Nous n’avons pas déterminé les sous-espaces propres de M1 en classe.
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• Pour M5

rg(M5 − λI3) = rg

−λ 1 0
0 −λ 1
1 0 −λ


= rg

 1 0 −λ
−λ 1 0
0 −λ 1

 (Change l’ordre des lignes)

= rg

1 0 −λ
0 1 −λ2

0 −λ 1


L2 ← L2 + λL1

= rg

1 0 −λ
0 1 −λ2

0 0 1− λ3


︸ ︷︷ ︸

triangulaire

L3 ← L3 + λL2

donc rg(M5 − λI3) < 3 si, et seulement si, λ3 = 1

si K = R, Sp(M5) = {1} si K = C, Sp(M5) =
{
1, ei

2π
3 , e−i 2π

3

}

• Si λ = 1 :

x
y
z

 ∈ E1(M5) ⇐⇒
{

x− y = 0
y − z = 0

donc

1
1
1

 est une base de E1(M5) .

• Si λ = ei
2π
3 :

x
y
z

 ∈ E1(M5) ⇐⇒

{
x − ei

2π
3 z = 0

y − ei
4π
3 z = 0

donc

ei
2π
3

ei
4π
3

1

 est une base de E
ei

2π
3
(M5) .

• Si λ = e−i 2π
3 :

x
y
z

 ∈ E1(M5) ⇐⇒

{
x − e−i 2π

3 z = 0

y − e−i 4π
3 z = 0

donc

e−i 2π
3

e−i 4π
3

1

 est une base de E
e−i 2π

3
(M5) .

• Pour M6 (D’autres calculs sont possibles, je montre ce qu’avait fait Erwan au tableau)

rg(M6 − λI3) = rg

2− λ 0 0
1 2− λ 1
−1 0 1− λ


= rg

 1 2− λ 1
2− λ 0 0
−1 0 1− λ

 L2 ←→ L1

= rg

1 2− λ 1
0 −(2− λ)2 −(2− λ)
0 (2− λ) (2− λ)

 L2 ← L2 − (2− λ)L1

L3 ← L3 + L1

Là on fait une disjonnction de cas −−−−−−−−−−−−−−−−−−−−−−−−−

• Si λ = 2 alors rg(M6 − λI3) = 1 et

x
y
z

 ∈ E2(M6) ⇐⇒ x+ 0y + z = 0

donc 2 est une valeur propre et

0
1
0

 ,

 1
0
−1

 est une base de E2(M6) .

(Ne pas oublier de vérifier vos résultats)

• Si λ ̸= 2 alors rg(M6 − λI3) = rg

1 2− λ 1
0 −(2− λ) 1
0 1 1

 = rg

1 2− λ 1
0 1 1
0 −(2− λ) 1

 = rg

1 2− λ 1
0 1 1
0 0 1− λ


︸ ︷︷ ︸

triangulaire
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On peut en déduire que :

Le spectre de M6 est {1, 2}

(Il reste à trouver une base de E1(M6))x
y
z

 ∈ E2(M6) ⇐⇒
{

x+ y + z = 0
y + z = 0

donc

 0
1
−1

 est une base de E1(M6) .

• Pour M7 (D’autres calculs sont possibles, je montre ce qu’avait fait Klervie au tableau)

rg(M7 − λI3) = rg

1− λ 2 1
0 −5− λ 0
1 8 1− λ


= rg

 1 8 1− λ
0 −5− λ 0

1− λ 2 1

 L3 ←→ L1

= rg

1 8 1− λ
0 −5− λ 0
0 2− 8(1− λ) 1− (1− λ)2


L3 ← L3 − (1− λ)L1

= rg

1 8 1− λ
0 −5− λ 0
0 8λ− 6 2λ− λ2


= rg

1 8 1− λ
0 8λ− 6 2λ− λ2

0 −5− λ 0

 L3 ←→ L2

jusque là que des opérations sur les lignes −−−−−−−−−−−−−−−−−−−−−−−−−

= rg

1 1− λ 8
0 2λ− λ2 8λ− 6
0 0 −5− λ


︸ ︷︷ ︸

triangulaire

C3 ←→ C2

donc rg(M7 − λI3) < 3 si, et seulement si, λ = −5 ou 2λ− λ2 = 0

or 2λ− λ2 = λ(2− λ) donc

Sp(M7) = {−5 , 0 , 2}

Soit X =

x
y
z

 ∈M3,1(R),

• Pour λ = −5.

X ∈ E−5(M7)) ⇐⇒ (M7 + 5I3)X =

0
0
0



⇐⇒

1 8 6
0 −46 −35
0 0 0

x
y
z

 =

0
0
0

 En utilisant les opérations élémentaires faites pour le calcul du rang
(Si vous ne comprenez pas, refaites tous les calculs)

⇐⇒ X ∈ Vect <

 4
−35
46


︸ ︷︷ ︸

libre

> (On sait que c’est de dimension 1 il suffit de trouver une solution non nulle)

 4
−35
46

 est une base de E−5(M7))
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• Pour λ = 0.

X ∈ E0(M7)) ⇐⇒ (M7 − 0I3)X =

0
0
0



⇐⇒

1 8 1
0 −6 0
0 −5 0

x
y
z

 =

0
0
0


⇐⇒ X ∈ Vect <

 1
0
−1


︸ ︷︷ ︸

libre

>

 1
0
−1

 est une base de E0(M7))

• Pour λ = 2.

X ∈ E2(M7)) ⇐⇒ (M7 − 2I3)X =

0
0
0



⇐⇒

1 8 −1
0 10 0
0 −7 0

x
y
z

 =

0
0
0


⇐⇒ X ∈ Vect <

1
0
1


︸ ︷︷ ︸
libre

>

1
0
1

 est une base de E2(M7))

• Pour M8 (comme pour toutes les matrices) il y a plusieurs approches je fais ce que nous avons fait en classe.

rg(M8 − λI3) = rg

1− λ 1 1
1 1− λ 1
1 1 1− λ


= rg

 1 1− λ 1
1− λ 1 1
1 1 1− λ

 L2 ←→ L1

= rg

1 1− λ 1
0 2λ− λ2 λ
0 λ −λ

 L2 ← L2 − (1− λ)L1

L3 ← L3 − L1

= rg

1 1− λ 1
0 2λ− λ2 λ
0 3λ− λ2 0


L3 ← L3 + L1

jusque là que des opérations sur les lignes −−−−−−−−−−−−−−−−−−−−−−−−−

= rg

1 1 1− λ
0 λ 2λ− λ2

0 0 3λ− λ2


︸ ︷︷ ︸

triangulaire

C3 ←→ C2

donc rg(M8 − λI3) < 3 si, et seulement si, λ = 0 ou 3λ− λ2 = 0

or 3λ− λ2 = λ(3− λ) donc

Sp(M8) = {0 , 3}
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• X ∈ Eλ(M)) ⇐⇒ (M − λIn)X = 0n×1

Soit X =

x
y
z

 ∈M3,1(R),

X ∈ E0(M8)) ⇐⇒

1 1 1
1 1 1
1 1 1

x
y
z

 =

0
0
0


⇐⇒ x+ y + z = 0

⇐⇒ X ∈ Vect <

 1
−1
0

 ,

 1
0
−1


︸ ︷︷ ︸

libre

>

 1
−1
0

 ,

 1
0
−1

 est une base de E0(M8))

• X ∈ Eλ(M)) ⇐⇒ (M − λIn)X = 0n×1

Soit X =

x
y
z

 ∈M3,1(R),

X ∈ E3(M8)) ⇐⇒ (M8 − 3I3)X =

0
0
0



⇐⇒

1 −2 1
0 −3 3
0 0 0

x
y
z

 =

0
0
0

 En utilisant les opérations élémentaires faites pour le calcul du rang
(Si vous ne comprenez pas, refaites tous les calculs)

⇐⇒ X ∈ Vect <

1
1
1


︸ ︷︷ ︸
libre

>

1
1
1

 est une base de E3(M8))

Remarque : Pour la matrice M8 les réponses sont identiques que K soit égal à R ou à C.

Ex 3 : 1) Quelle que soit la matrice B, Sp(f) = Sp
(
MatB(f)

)

• On note M la matrice de f dans la base canonique, on a M =

(
0 1
1 0

)
M − λI2 =

(
−λ 1
1 −λ

)
donc λ ∈ Sp(M) ⇐⇒ λ2 − 1 = 0

Sp(f) = {−1; 1}
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Quelle que soit λ ∈ Sp(f), u ∈ Eλ(f) ⇐⇒ f(u) = λu

• Pour λ = 1,
Soit u = (x, y) ∈ R2,

u ∈ E1(f) ⇐⇒ f(u) = u

⇐⇒
{

x = y
y = x

⇐⇒ y = x

((1, 1)) est une base de E1(f)

• Pour λ = −1,
Soit u = (x, y) ∈ R2,

u ∈ E−1(f) ⇐⇒ f(u) = −u

⇐⇒
{

x = −y
y = −x

⇐⇒ y = −x

((1,−1)) est une base de E−1(f)

2) λ ∈ Sp(f) ⇐⇒ ∃u ̸= 0E : f(u) = λu

• Si λ ̸= 0, quel que soit le polynôme P non nul, deg (P ′) ̸= deg(λP ) donc P ′ ̸= λP et ainsi

λ n’est pas une valeur propre de f

• pour P = 1 on a P ̸= 0 et φ(P ) = 0 donc 0 est une valeur propre de φ.

en conclusion :

0 est l’unique valeur propre de φ

Quelle que soit λ ∈ Sp(f), u ∈ Eλ(f) ⇐⇒ f(u) = λu

Soit P ∈ R[X],

P ∈ E0(φ) ⇐⇒ φ(P ) = 0E

⇐⇒ P ′ = 0

⇐⇒ ∃a ∈ R : P (X) = a

(1) est une base de E0(φ)

3) Quelle que soit la matrice B, Sp(f) = Sp
(
MatB(f)

)

• On note M la matrice de f dans la base canonique, on a M =

(
2 1
3 0

)
M − λI2 =

(
2− λ 1
3 −λ

)
donc λ ∈ Sp(M) ⇐⇒ λ2 − 2λ− 3 = 0 ⇐⇒ (λ+ 1)(λ− 3) = 0

Sp(f) = {−1; 3}
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Quelle que soit λ ∈ Sp(f), u ∈ Eλ(f) ⇐⇒ f(u) = λu

• Pour λ = −1,
Soit u = (x, y) ∈ C2,

u ∈ E−1(f) ⇐⇒ f(u) = −u

⇐⇒
{

2x+ y = −x
3x = −y

⇐⇒ 3x+ y = 0

((1,−3)) est une base de E−1(f)

• Pour λ = 3,
Soit u = (x, y) ∈ C2,

u ∈ E3(f) ⇐⇒ f(u) = 3u

⇐⇒
{

2x+ y = 3x
3x = 3y

⇐⇒ y = x

((1, 1)) est une base de E3(f)

4) λ ∈ Sp(f) ⇐⇒ ∃u ̸= 0E : f(u) = λu

Soit λ un réel quelconque,
en prenant f : t 7−→ eλt on a : f ̸= 0 et φ(f) = λf donc λ ∈ sp(φ)

Le spectre de φ est R tout entier

Quelle que soit λ ∈ Sp(f), u ∈ Eλ(f) ⇐⇒ f(u) = λu

Pour tout λ ∈ R,
f ∈ Eλ(f) ⇐⇒ f ′ = λf ⇐⇒ ∃k ∈ R : f : t 7−→ ke−λt

Pour tout réel λ,
(
t 7−→ e−λt

)
est une base de Eλ(f)

(Remarque : pour tout λ, Eλ(f) est de dimension 1 )
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Ex 4 : 1) Le vecteur e3 est non nul et f(e3) = (−1)e3 donc −1 est une valeur propre de f .

2) On note E = R3.
Rédaction 1.

Soit u ∈ E, on note

x
y
z

 = CoordB(u)

u ∈ E−1 ⇐⇒ f(u) = −u

⇐⇒

 1 −1 0
−1 0 0
−1 −1 −1

x
y
z

 = −

x
y
z


⇐⇒

 2x− y = 0
−2x+ y = 0
−2x+ y = 0

⇐⇒ 2x− y = 0

⇐⇒

x
y
z

 ∈ Vect <

1
2
0

 ;

0
0
1

 >

⇐⇒ u ∈ Vect < e1 + 2e2 ; e3 >

(e1 + 2e2 ; e3) est une base du sous-espace propre de f associé à la valeur propre −1

Rédaction2.
Soit u ∈ E, on note u = xe1 + ye2 + ze3

u ∈ E−1 ⇐⇒ f(u) = −u
⇐⇒ xf(e1) + yf(e2) + zf(e3) = −(xe1 + ye2 + ze3)

⇐⇒ x(e1 − 2e2 − 2e3) + y(−e1 + e3) + z(−e3) = −(xe1 + ye2 + ze3)

⇐⇒ (x− y)e1 + (−x)e2 + (−x− y − z)e3 = −xe1 − ye2 − ze3

⇐⇒

 x− y = −x
−2x = −y
−2x− y − z = −z

⇐⇒

 2x− y = 0
−2x+ y = 0
−2x+ y = 0

⇐⇒ y = 2x

⇐⇒ u = xe1 + 2xe2 + ze3

⇐⇒ u = x (e1 + 2e2) + z e3

⇐⇒ u ∈ Vect < e1 + 2e2 ; e3 >

(e1 + 2e2 ; e3) est une base du sous-espace propre de f associé à la valeur propre −1

Ex 5 : (on peut utiliser une matrice mais aussi :)
1) En notant g = φ− λIdE et B la base canonique de Rn[X], on a

pour tout k ∈ [[0;n]], g(Xk) = (k − λ)Xk

si λ ∈ [[0;n]], alors g(B) n’est pas une base, et si λ ̸∈ [[0;n]], alors g(B) est une base,
Autrement dit : g(B) n’est pas une base si, et seulement si, λ ∈ [[0;n]]

donc Le spectre de φ est [[0;n]]

2) Avec les notations de la question précédente : on remarque que pour k ∈ [[0;n]], rg(g) = n− 1 donc

Pour tout λ ∈ [[0;n]], dim(Eλ(f)) = 1

3) Pour tout k ∈ [[0;n]], Xk ∈ Ek(f) et dim(Eλ(f)) = 1 donc

Pour tout k ∈ [[0;n]], Ek(f) a pour base (Xk)
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Ex 6 : (non corrigé)

Ex 7 : Soit A une matrice quelconque de Mn(K).

1) λ valeur propre ⇐⇒ rg(M − λIn) < n

Soit λ ∈ K,

rg(A− λ In) = rg
(
(A− λ In)

⊤
)

= rg(AT − λ ITn )

= rg(AT − λ In)

ainsi : λ ∈ Sp(A) ⇐⇒ rg(A− λ In) < n ⇐⇒ rg(AT − λ In) < n ⇐⇒ λ ∈ Sp(AT )

donc Sp(A) = Sp(A⊤)

2) dim(Eλ(M)) + rg(M − λIn) = n

Soit λ ∈ Sp(A)
(
= Sp(A⊤)

)
,

dim (Eλ(A)) = n− rg(A− λIn) (théorème du rang)

= n− rg(A⊤ − λIn)

= dim
(
Eλ(A

⊤)
)

Pour tout λ ∈ Sp(A), dim
(
Eλ(A

⊤)
)
= dim (Eλ(A))

Ex 8 : A et B sont deux matrices semblables donc A et B représentent le même endomorphisme dans deux bases :

A = MatB(f) B = MatB′(f)

1) Quelle que soit la matrice B, Sp(f) = Sp
(
MatB(f)

)
Sp(A) = Sp(MatB(f))

= Sp(f)

= Sp(MatB′(f))

= Sp(B)

A et B ont même spectre

2) Quelle que soit la matrice B, rg(f) = rg
(
MatB(f)

)
Soit λ une valeur propre de A (et de B),

dim(Eλ(A)) = n− rg(A− λIn)

= n− rg(MatB(f)− λIn)

= n− rg(MatB(f − λIdE))

= n− rg(f − λIdE)

de même on montre : dim(Eλ(B)) = n− rg(f − λIdE)

on a bien :

Eλ(A) et Eλ(B) ont même dimension
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Ex 9 : 1) Soient U ∈Mp,1(K) et λ ∈ K,
on suppose que U ̸= 0 et MU = λU , (λ valeur propre de M associée à U)

Montrons par récurrence sur n que pour tout n ∈ N, MnU = λnU

• Pour n = 0,
On a d’une part M0U = InU = U et λ0U = 1U = U

la propriété est vraie pour n = 0,

• Soit n ∈ N tel que MnU = λnU ,

Mn+1U = Mn (MU)

= Mn (λU)

= λ (MnU)

= λ (λnU) d’après l’hypothèse de récurrence

= λn+1U

En conclusion : pour tout n ∈ N∗, MnU = λnU .

or U ̸= 0p×1 donc

λn valeur propre de Mn associée à U

2) Soient λ ∈ K, U ∈Mp,1(K) et P (X) =

n∑
k=0

akX
k ∈ K[X],

on suppose que : P (M) = 0p×p , U ̸= 0p×1 et MU = λU , (λ valeur propre de M associée à U)

P (M) = 0 donc P (M)U = 0p×1 et ainsi
n∑

k=0

akM
kU = 0p×1

or on a montré en a) que MkU = λkU donc
n∑

k=0

akλ
kU = 0p×1 on en déduit que : P (λ)U = 0p×1

or U ̸= 0p×1 donc P (λ) = 0.

En conclusion :

Si P (M) = 0p×p alors toute valeur propre de M est une racine de P .

Autrement dit : Le spectre de M est inclus dans l’ensemble des racines de P .
Attention : toutes les racines de P ne sont pas nécessairement des valeurs propres de M .

3) On admet A(A+ 4I4)
3 = 0p×p

a. En notant P (X) = X(X + 4)3 on a P (A) = 0p×p et les racines de P sont 0 et −4,
donc ( en utilisant le résultat de la question 2) ) le spectre de A est inclus dans {0,−4}.

Il reste à montrer que 0 et 4 sont bien des valeurs propres de A.
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Pour λ = 0.

rg(A− 0I4) = rg


−3 1 −3 5
1 −3 5 −3
1 1 −3 1
1 1 1 −3



= rg


0 0 0 0
1 −3 5 −3
1 1 −3 1
1 1 1 −3

 L1 ← L1 + L2 + L3 + L4

= rg


1 −3 5 −3
1 1 −3 1
1 1 1 −3
0 0 0 0

 L1 ↔ L2 puis L2 ↔ L3 puis L3 ↔ L4

= rg


1 −3 5 −3
0 4 −8 4
0 4 −4 0
0 0 0 0

 L2 ← L2 + L1

L3 ← L3 + L1

= rg


1 −3 5 −3
0 4 −8 4

0 0 4 −4
0 0 0 0

 L3 ← L3 − L2

= 3 (̸= 4)

donc 0 est une valeur propre de A

Pour λ = −4.

rg(A+ 4I4) = rg


1 1 −3 5
1 1 5 −3
1 1 1 1
1 1 1 1



= rg


1 1 −3 5
0 0 8 −8
0 0 4 −4
0 0 4 −4

 L2 ← L2 − L1

L3 ← L3 − L1

L4 ← L4 − L1

= rg


1 1 −3 5

0 0 8 −8
0 0 0 0
0 0 0 0

 L3 ← 2L3 − L2

L4 ← 2L4 − L2

= 2 (̸= 4)

donc −4 est une valeur propre de A

En conclusion :

Le spectre de A est {0,−4}

b. dim(Eλ(M)) + rg(M − λIn) = n

Sp(A) = {0,−4} et les calculs de rang précédents montrent que :

dim(E0(A)) = 1 et dim(E−4(A)) = 2

Ex 10 : (non corrigé)

11



Ex 11 : Soit M une matrice de Mn(R)

1) Si les sommes de chaque ligne de M sont égales à une même constante c alors ∀i ∈ [[1, n]];

n∑
j=1

mij = c

autrement dit : M

1
...
1

 =

c
...
c

 ce qui donne M

1
...
1

 = c

1
...
1


et comme

1
...
1

 ̸=
0

...
0


c est une valeur propre de M

2) Si les sommes de chaque colonne de M sont égales à un c alors d’après 1) c est une valeur propre de MT ,
or sp(M) =sp(MT ) (en effet : rg(M − λ In) = rg(MT − λ In) )

Si les sommes de chaque colonne de M sont égales à un c alors c est une valeur propre de M

Ex 12 : (non corrigé)
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