BCPST 24 2025/2026

Correction de la feuille Cours 7 : Eléments propres d’un endomorphisme ou d’une matrice. ‘

Les parties encadrées rappel de cours ne sont pas nécessaires dans une copie bien rédigée.
Ex1: A valeur propre <= rg(M — \I,,) <n
1 1 1
rg(M—(-1)Izs)=rg|1 1 1] =1<3 donc —1 est une valeur propre de M
11 1

Remarque : rg(M — (—1)I3) = 1 donc le théoréeme du rang donne dim(E_1(M)) = 2

dim(Ey(M)) + rg(M — \I,) = n

X e E\(M)) < (M —-)\)X =0,x1

x
Soit X = |y | € #51(R),
z
1 1 1 T 0
X eE (M) «— 111 y|l=10
1 1 1 z 0
= r+y+z =0
1 1
«— XeVect< |-1],1 0 ]>
0 -1
—_——
libre
1 1
-1],( 0 est une base de E_1(M))
0 -1
Ex 2: A valeur propre <= rg(M — \I,,) <n

A€ESp(M;) <= 1g(M;— ML) <2 (ou My — A2 non inversible)

— MN4+2=0

donc  [Si K =R alors Sp(M;) = & et Si K = C alors Sp(M7) = {—iv2; Zﬁ}‘

Nous n’avons pas déterminé les sous-espaces propres de Mi en classe.



o Pour M;

rg(Ms — M3)

-2 1 0
rgl 0 =X 1
1 0 =X
1 -
rg| -\ 1 0 (Change lordre des lignes)
0 —-Xx 1
1 0 =X
0 1 =X
Sl Ly ¢ Ly + ALy
1 0 —-A
rg [0 1 —=\2 Ly < L3+ AL
00 1-A°

triangulaire

donc  rg(Ms — M3) < 3 si, et seulement si, \*> = 1
siK=R, Sp(Ms) = {1} siK=C, Sp(Ms) = {1,ei27ﬂ7e_i27ﬂ}
T v . 1
eSiA=1: y | € BE1(Ms) < { Ziz _ . donc 1 est une base de E1(Ms5)].
z Y N 1
Il
I I s
e Si\=¢lF y| € Bi(M;) < roe jan 0 donc e est une base de E ;25 (M;)|.
y—e 3 z= e
z 1
42T
x e e '3
. _j2m xr — e '32=0 an
eSiA=¢ '3 y | € Ey(M;5) — _jan donc e i3 est une base de F _,2x (Ms5)|.
5 y—e '32=0 1 e 3

e Pour Mg (D’autres calculs sont possibles, je montre ce qu’avait fait Erwan au tableau)

rg(Me — M3)

La on fait une disjonnction de cas

e Si A =2alors rg(Mg — Al3) =1 et

xT

rg

rg

2-X 0 0
1 2-x 1
—1 0 1-2X
1 2-x 1
2— A 0 0 LQ(—)Ll
—1 0 1-2\
12— 1
0 —(2-XN2 —(2-X) Ly <+ Ly—(2— N1y
0 (Q—A) (2—A) L+ L3+ Ly

y| € Ey(Mg) < x+0y+2=0

(Ne pas oublier de vérifier vos résultats)

z
0 1
donc 2 est une valeur propre et 11,10 est une base de Eo(Mg)|.
0 -1
1 2—A 1 1 2—A 1 1 2—X
e SiA#2alorsrg(Mg — Al5)=1g |0 —(2—-X) 1| =rg|0 1 1| =rg|0 1
0 1 1 0 —(2-A) 1 0 0

triangulaire




On peut en déduire que :

[Le spectre de Mg est {1, 2}]

(1l reste & trouver une base de E1(Mg))

T 0
y | € Ea(Ms) < { T+Y i N B 8 donc 1 est une base de Ey(Mg)]|.
z yrE= -1

e Pour M7 (D’autres calculs sont possibles, je montre ce qu’avait fait Klervie au tableau)

1—A 2 1
rg(M; — M5) = rg 0 -5-X 0
1 8 1—A
1 8 1—AX
= Ig 0 —5—-A 0 L3 +—— In
1-—A 2 1
1 8 1—A
= rg|0 —-5—-2A 0
0 2-8(1—X) 1—(1-2))>? L3+ Lz —(1—X\)L,
1 8 1-X
= rg|0 —5—-AX 0
0 8A—6 2A—\°
1 8 1-AX
= 1g|0 8A\—6 2X\—\2 Ly Ly
0 —5—X 0
Jusque la que des opérations sur les lignes @ @—— — — — — — — — — — — — — — — — — — — — — — — —
1 1-=X 8
= 1rg|0 22—X% 8\—6
0 0 5\ 03 — CQ
triangulaire
donc  rg(My; — A3) < 3 si, et seulement si, A\ = —5 ou 2\ — A2 =0
or 2\ — A% = A\(2 — \) donc
’ Sp(M'?) = {_57 07 2} ‘
T
Soit X =y | € %371<R),
z
e Pour A\ = —5.
0
X €E_5(M;) <= (M;+5I3)X=[0
0
0
= —46 y]l =10 En utilisant les opérations élémentaires faites pour le calcul du rang
z 0 (St vous ne comprenez pas, refaites tous les calculs)
4
— X € Vect < —35 > (On sait que c’est de dimension 1 il suffit de trouver une solution non nulle)
llbre
4
—35 est une base de F_5(M7))
46




e Pour A = 0.

——
libre
1
0 est une base de FEo(My))
-1
e Pour \ = 2.
0
X e E2<M7)) <~ (M7 — 2[3)X =1|0
0
1 8 -1 T 0
— 0 10 O y] =10
0 -7 0 z 0
1
— XeVect< |0]| >
1
——
libre
1
0 est une base de Eq(M7))
1

e Pour Mg (comme pour toutes les matrices) il y a plusieurs approches je fais ce que nous avons fait en classe.

1—AX 1 1
I'g(Mg - )\13) = 1g 1 1—A 1
1 1 1-A
1 1—A 1
= rg|l1-A 1 1 Ly +— Ly
1 1 1-A
1 1-A 1
= 1g|0 22-)* A Ly <+ Ly — (1 =\
0 A —A L3 — L3 — Ll
1 1-Xx 1
= 1g[0 22-)% )
0 3A—X2 0 L3« L3+ Ly
jusque la que des opérations sur les lignes @ —— — — — — — — — — — — — — — — — — — — — — — — —
1 1 1—-A
= g0 X 2x—)\2
0 0 3x— A2 Cs = O

triangulaire

donc  rg(Mg — A3) < 3 si, et seulement si, A = 0 ou 3\ — A\ =0
or 3\ — A? = A\(3 — \) donc

| Sp(Ms) = {0, 3} |




.[ X € Ex(M)) < (M —A)X = 0,1

T
Soit X =|y| € %3’1([@),
z
1 1 1 x 0
X € Eo(Mg)) <— 1 1 1 y] =10
1 1 1 z 0
= z+y+z =0
1 1
— XeVect<|-1],]1 0| >
0 -1
—_——
libre
1 1
1], 0 est une base de Ey(Ms))
0 1
ol XeE\(M)) < (M—A,,)X =0,x1
T
Soit X =y | € %3@(]1%),
z
0
X e Eg(Mg)) — (MS — 3[3)X =10
0
1 -2 1 T 0
= 0 -3 3 y]l =10 En utilisant les opérations élémentaires faites pour le calcul du rang
0O 0 O z 0 (Si vous ne comprenez pas, refaites tous les calculs)

1
<— X € Vect < 1) >
1

libre

1
1 est une base de F3(Ms))
1

Remarque : Pour la matrice Mg les réponses sont identiques que K soit égal & R ou a C.

Ex3: 1) Quelle que soit la matrice &, Sp(f) = Sp(Mat%»(f)) ]

e On note M la matrice de f dans la base canonique, on a M = ((1) é)

M—)\Igz(f\ _1)\) donc A€ Sp(M) <= XN —-1=0

[ Sp(f) = {-1;1} |




Quelle que soit A € Sp(f), u € Ex(f) <= f(u) = Au

e Pour A =1,
Soit u = (z,y) € R?,

ue B (f) <= flu)=u

= Lo
y=

= y==x

[((1,1)) est une base de E1(f)]

e Pour A = —1,
Soit u = (z,y) € R?,
ueE_1(f) <= f(u)=-u

- {372
y=-—x

= y=-x

[((1,—1)) est une base de E_1(f)]

2) A€ SP(f) <= Fu#0g: f(u) =Iu

e Si A # 0, quel que soit le polynome P non nul, deg (P’) # deg(AP) donc P’ # AP et ainsi

A n’est pas une valeur propre de f

epour P=1onaP#0 et ¢o(P)=0 donc 0 est une valeur propre de ¢.

en conclusion :

’ 0 est I'unique valeur propre de ¢

Quelle que soit A € Sp(f), u € Ex(f) < f(u) = \u

Soit P € R[X],
P e EQ((,D) < (p(P) =0g
<~ P =0
<— daeR:PX)=a

’ (1) est une base de Eo(cp)‘

3) Quelle que soit la matrice %, Sp(f) = Sp(Matz(f))

e On note M la matrice de f dans la base canonique, on a M = (; (1))

M -\, = (2;’\ _1A> donc A€ Sp(M) <= N —-2X1-3=0 <= A+1)(A=3)=0

| Sp(f) = {-1;3} |




Quelle que soit A € Sp(f), u € Ex(f) <= f(u) = Au

e Pour A = —1,
Soit u = (x,y) € C?,

ueE_1(f) <= flu)=-u

— { 2r4+y=—=x
3z =—y

= 3Jx+y=0

1((1,—3)) est une base de E_(f)]

e Pour )\ = 3,
Soit u = (z,y) € C?,
ue€ Es(f) <= f(u)=3u

2r+y =3z
= { 3z =3y

= y==z

1((1,1)) est une base de E5(f)]

A€ SP(f) < Ju#0g: f(u) = u ]

Soit A un réel quelconque,
en prenant f:t — e ona: f#0 et o(f) =Af donc \ € sp(ep)

| Le spectre de ¢ est R tout entier |

Quelle que soit A € Sp(f), u € Ex(f) < f(u) = u

Pour tout A € R,
fEENf) — f'=\f — FkecR:f:tr— ke ™M

‘ Pour tout réel \,  (t — e~ *") est une base de E)(f) ‘

(Remarque : pour tout A, Ex(f) est de dimension 1 )



Ex 4: 1) Le vecteur es est non nul et f(e3) = (—1)es donc |[—1 est une valeur propre de f|.

2) On note E = R?.
Rédaction 1.
x
Soit u € E, onnote [y | = Coordz(u)
z

veE ; < f(u)=-u

1 -1 0 T T
<= -1 0 0 yl ==y
-1 -1 -1 z z
2z —y = 0
—2z4+y = 0
—2z4+y = 0
— 2xr—y=0
T 1 0
= y| €Vect< |2];10] >
z 0 1

< u € Vect < e +2e; e3>

’ (e1 + 2e2 ; e3) est une base du sous-espace propre de f associé a la valeur propre —1

Rédaction2.
Soit w € E, on note u = ze; + yes + zes
ueFE 1 <= f(u)=-u
<~ zf(er) +yflex) +2f(e3) = —(zer + yea + ze3)
< x(e1 —2ez — 2e3) +y(—e1 +e3) + z(—e3) = —(wer + yea + ze3)
— (z—yle1+ (—x)ea+ (—x —y— z)es = —xe; — yey — ze3
T—y = —x
— —2z = —y
—2r-y—2z = -z
20—y =0
= —2x+y = 0
—2rx+y = 0
= y=2
< u=xe| + 2xey + zeg
— u==z(e1+2e)+ze3
< wu € Vect < e +2e; e3>

’ (e1 + 2e2 ; e3) est une base du sous-espace propre de f associé a la valeur propre —1

Ex 5 : (on peut utiliser une matrice mais aussi :)
1) En notant g = ¢ — Aldg et A la base canonique de R,,[X], on a
pour tout k € [0;n], g(X*) = (k- )X*

si A € [0;n], alors g(#) n’est pas une base, et si A € [0;n

], alors g(#) est une base,
Autrement dit : g(#) n’est pas une base si, et seulement si, A € [0;n]

donc | Le spectre de ¢ est [0;n] |

2) Avec les notations de la question précédente : on remarque que pour k € [0;n], rg(g) =n — 1 donc

| Pour tout A € [0;n], dim(Ex(f)) =1 |

3) Pour tout k € [0;n], X* € Ex(f) et dim(Ex(f)) =1 donc

’ Pour tout k € [0;n], Ex(f) a pour base (X*) ‘




Ex 6 : (non corrigé)

Ex 7 : Soit A une matrice quelconque de ., (K).

1) [ A valeur propre <= rg(M — \,,) <n ]

Soit A € K,

(A=) = rg((A-AL)T)
rg(AT = \IT)
rg(AT )

ainsi : A € Sp(A) <= 1g(A - \1,,) <n <= rg(AT —\I,) <n < X e Sp(Al)

donc ’ Sp(A) =Sp(A") ‘

2) dim(Ex(M)) +rg(M — A,) =n

Soit A € Sp(A) (= SP(AT))a

dim (Ex(4)) = n—r1g(4—A,) (théoréme du rang)
n—1g(A" — \,,)
= dim (Ex(4"))

Pour tout A € Sp(A), dim (Ex(A7)) = dim (Ex(4)) |

Ex 8 : A et B sont deux matrices semblables donc A et B représentent le méme endomorphisme dans deux bases :

A= Mats(f) B = Matg(f)

1) [ Quelle que soit la matrice %, Sp(f) = Sp(Matz(f)) ]

Sp(A) = Sp(Matz(f))

i
L W
=A==~
-
S~—

IS
=
¥
—
~
S—

’ A et B ont méme spectre‘

2) Quelle que soit la matrice %, rg(f) = rg(Matx(f))

Soit A une valeur propre de A (et de B),

dim(E\(A)) = n—rg(4—\,)

(
= n—1g(Matzs(f) — M)
= n—rg(Matg(f — M\dg))
= n—r1g(f—Adg)

de méme on montre :  dim(Ex\(B)) =n —rg(f — Mldg)
on a bien :

’ E)(A) et E\(B) ont méme dimension




Ex9: 1) Soient U € #,1(K) et X €K,
on suppose que U # 0 et MU = AU, (X valeur propre de M associée a U)

Montrons par récurrence sur n que pour tout n € N, M"U = \"U
e Pour n =0,
On a d’'une part MU = LU =U et \°U =1U =U
la propriété est vraie pour n = 0,
e Soit n € N tel que M"U = \"U,
M"MU = M™(MU)
M™ (\U)
= A(M"U)
A(AMD) d’apreés Uhypothése de récurrence
— )\n+1U

En conclusion : pour tout n € N*, M"U = \"U.

or U # 0px1 donc

’ A" valeur propre de M™ associée a U

2) Solent A € K, U € 4,1 (K) et P(X) = a,X*¥ € K[X],
k=0
on suppose que : P(M) =0pxp, U #0px1 et MU = AU, (X valeur propre de M associée a U)

P(M) =0 donc P(M)U = Opx1 et ainsi ZakMkU = 0px1

k=0
n

or on a montré en a) que MFU = MU donc Zak)\kU = 0px1 on en déduit que :  P(A)U = 0px1
k=0
or U # 0,x1 donc P(X) =0.

En conclusion :

’ Si P(M) = Opxp alors toute valeur propre de M est une racine de P.

Autrement dit : Le spectre de M est inclus dans l’ensemble des racines de P.

Attention : toutes les racines de P ne sont pas nécessairement des valeurs propres de M.
3) On admet A(A + 41,)% = 0px,

a. En notant P(X) = X (X +4)% on a P(A) = 0,x, et les racines de P sont 0 et —4,
donc ( en utilisant le résultat de la question 2) ) le spectre de A est inclus dans {0, —4}.

1l reste a montrer que 0 et 4 sont bien des valeurs propres de A.

10



Pour A = 0.

1 -3 5 =3
rg(A—0I;) = rg 11 -3
1 1 1 =3
0 0 0 O
1 -3 5 =3
=%, 4 _3 3 Ly < Ly + Lo+ L3+ Ly
1 1 1 -3
1 -3 5 =3
1 1 -3 1 . .
= 1g 1 1 1 _3 Ly <> Lo puis Ly <+ L3 puis L3 <> Ly
0 O 0 0
1 -3 5 -3
N 0 4 -8 4 Lo+ Lo+ 14
= lo 4 -4 o0 Ly« L3+ L,
0 O 0 0
-3 5 -3
N -8 4
0 0 —4 Lg < L3 — Ly
0 0 0 ©0
= 3 (#4)
donc 0 est une valeur propre de A
Pour A\ = —4.
11 -3 5
11 5 -3
rgd+dl) = el
1 1 1 1
11 -3 5
- 7 0 0 8 -8 Lo+ Lo — Iy
-~ lo o0 4 -4 Ls+ Ly — Ly
0 0 4 —4 L4 < L4 — L1
1 -3 5
- 8] -8
0 0 0 0 L3+ 2L3— Lo
0 0 0 O Ly 2Ly — Lo
= 2 (#4)

donc —4 est une valeur propre de A

En conclusion :

| Le spectre de A est {0, —4} |

b. | dim(Ex(M)) +rg(M — A,) = n

Sp(A) = {0,—4} et les calculs de rang précédents montrent que :

[dim(Eo(A)) =1 et dim(E_4(A)) =2

Ex 10 : (non corrigé)

11



Ex 11 : Soit M une matrice de .4, (R)

n

1) Si les sommes de chaque ligne de M sont égales & une méme constante ¢ alors Vi € [1,n]; Z mi; =c¢

j=1
1 c 1 1
autrement dit : M | : [ = | ]| ce quidonne M | : [ =¢
1 c 1 1
1 0
et comme | : | # | :
1 0

’ c est une valeur propre de M ‘

2) Si les sommes de chaque colonne de M sont égales a un ¢ alors d’aprés 1) ¢ est une valeur propre de M7,
or sp(M) =sp(M7T) (en effet : rg(M — \1I,,) = rg(MT — \1I,,) )

’Si les sommes de chaque colonne de M sont égales & un c alors ¢ est une valeur propre de M ‘

Ex 12 : (non corrigé)

12



