
BCPST 2A

DEVOIR SURVEILLÉ

MATHÉMATIQUES

samedi 10 janvier 2026

(3 heures)

Si au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il en fait mention dans
sa copie et poursuit sa composition. Dans ce cas, il indique clairement la raison des initiatives qu’il est amené à
prendre.

La qualité de la rédaction, la clarté et la précision des raisonnements entrent pour une part importante dans
l’appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les conclusions.

La calculatrice est autorisée.

Ce sujet comporte 6 pages.

Un formulaire Python est donné à la fin du sujet.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Les modèles de Gompertz et de Verhulst, issus de la démographie humaine au XIXième siècle, ont ouvert la voie
aux modèles biologiques structurés en âge développés au XXième siècle, tels que le modèle de Leslie. Ce sujet
est consacré à l’étude de modèles de Leslie à trois ou quatre classes d’âge, formulés sous forme d’une relation
matricielle, et à l’analyse de leur comportement à long terme.

Ce problème comporte des questions préliminaires suivies de cinq parties, la partie B utilise les résultats de la
partie A et la partie D ceux de la partie C.
Les questions préliminaires servent dans les parties B, C et D.

La partie E est consacrée à des questions d’informatique et les parties B et D sont plus orientées vers l’étude de
modèles de dynamique de population.

Les différentes parties peuvent être traitées dans l’ordre de votre choix. Toutefois, pour chacune d’elles, les réponses
doivent être présentées dans l’ordre des questions.
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Dans ce sujet, on pourra identifier Rn à Mn,1(R) et Cn à Mn,1(C).

Pour A ∈ Mn(R), on note Sp(A) le spectre de A.

Pour tout λ ∈ Sp(A), on note Eλ(A) le sous-espace propre de A associé à λ.

Rappel.
• Pour tout (z1, z2) ∈ C2, |z1 + z2| ⩽ |z1|+ |z2|,

• Pour tout (z1, z2) ∈ C2, |z1 + z2| = |z1|+ |z2| ⇐⇒ ∃(α, β) ∈ (R+)
2 \ {(0, 0)} : αz1 = βz2

Pour M = (mij) une matrice de Mn,p(R),
on écrira M ⩾ 0 l’assertion : ∀(i, j) ∈ [[1, n]]× [[1, p]], mij ⩾ 0

on écrira M > 0 l’assertion : ∀(i, j) ∈ [[1, n]]× [[1, p]], mij > 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Quelques définitions et résultats préliminaires.

Norme 1 d’un vecteur.

Soient p ∈ N∗, u = (u1, ..., up) un vecteur de Cp on appelle norme 1 de u le réel défini par : ||u||1 =
p∑

i=1

|ui|

On admet les propositions suivantes :
— Pour tout u ∈ Cp, ||u||1 ⩾ 0.
— Pour tout u ∈ Cp, ||u||1 = 0 ⇐⇒ u = 0Cp .
— Pour tout λ ∈ C et tout u ∈ Cp, ||λu||1 = |λ| ||u||1.
— Pour tout u ∈ Cp et v ∈ Cp, ||u+ v||1 ⩽ ||u||1 + ||v||1.

1) Soit (Xn)n∈N une suite de vecteurs de Rp, on note pour tout n : Xn = (xn,1, ..., xn,p)

a) Montrer que :
(
||Xn||1

)
tend vers 0 si, et seulement si, pour tout i ∈ [[1, p]], lim

n→+∞
xn,i = 0

On dira que la suite (Xn)n∈N converge vers un vecteur X∗ = (x∗
1, . . . , x

∗
p) ∈ Rp si la suite réelle

(
∥Xn−X∗∥1

)
tend vers 0. D’après la question 1) a), cela revient à dire que, pour tout i ∈ [[1, p]], la suite réelle (xn,i)n∈N

converge vers x∗
i .

b) Montrer que s’il existe α ∈ [0, 1[ tel que pour tout n ∈ N, ||Xn+1||1 ⩽ α||Xn||1 alors (Xn) converge vers
0Rp

2) Ecrire une fonction Python norme_1(u) qui prend en entrée une liste de nombres u représentant un vecteur
et qui renvoie sa norme 1.

Matrice à diagonale strictement dominante.

Soit A une matrice carrée de Mp(R),

On dit que A est à diagonale strictement dominante lorsque : ∀i ∈ [[1; p]], |aii| >
p∑

j=1
j ̸=i

|aij |

3) Parmi les matrices suivantes, indiquer sans justification, lesquelles sont à diagonale strictement dominante.

M1 =

2 1 1
1 2 1
1 1 2

 M2 =

−5 2 1
1 −3 −1
1 1 5

 M3 =
1

5


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

− I4

4) Écrire une fonction Python diag_dominante(A) qui renvoie True si une matrice A est à diagonale strictement
dominante, et False sinon.

(On ne vérifiera pas que la matrice passée en argument est bien carrée.)
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Partie A : Etude des valeurs propres d’une matrice.

Soit L la matrice


0 2 1
1

2
0 0

0
3

5

2

5


5) Montrer que rg(L− λI3) ̸= 3 si, et seulement si, 10λ3 − 4λ2 − 10λ+ 1 = 0

Dans la suite on note P : x 7−→ 10x3 − 4x2 − 10x+ 1

6) Montrer que P ′ admet deux racines réelles a et b vérifiant −1 < a < 0 < b < 1.
7) En déduire le tableau de variations de P . On ne calculera pas les valeurs de P (a) et P (b).

8) Montrer que P admet trois racines réelles λ1, λ2 et λ3 vérifiant : −1 < λ1 < 0 < λ2 <
2

5
< 1 < λ3 < 2

9) Ecrire un programme Python utilisant l’algorithme de dichotomie et qui permet de calculer une valeur
approchée de λ3 à 10−4 près.

10) Utilisez votre calculatrice pour déterminer une valeur approchée de λ3 à 10−2 près.
Vous expliquerez la démarche utilisée.

Partie B : Un premier modèle de Leslie.

On considère une population répartie en trois classes d’âge : les jeunes, les adultes jeunes et les adultes âgés.

Pour tout entier n, on note

Xn =

jn
an
vn

 ,

où jn, an et vn désignent respectivement les effectifs des trois classes à la génération n.

L’évolution de la population est modélisée par la relation Xn+1 = LXn, où L est la matrice de la partie A.

11) Interpréter les coefficients de L.
12) On pose dans cette question X0 = (100, 60, 40) et on note pour chaque n dans N, tn = jn + an + vn.

a) Montrer que (tn) n’est pas constante.
b) Interpréter ce résultat.

13) a) Soit U = (u1, u2, u3) un vecteur non nul et λ un réel tel que LU = λU

(U vecteur propre de L associé à λ)
Déterminer U en fonction de λ en supposant u2 = 1.

b) En déduire qu’il existe un unique V ∈ M3,1(R) et un unique réel λ̂ tels que :

v1 > 0, v2 = 1 et v3 > 0 et LV = λ̂V

Pour X =

x1

x2

x3

 ∈ M3,1(R) on définit lorsque c’est possible : X∗ =
1

x1 + x2 + x3

X

c) Montrer que (LV )∗ = V ∗ et interpréter ce résultat vis à vis du modèle étudié.

14) On a vu dans la partie A que L possède trois valeurs propres réelles et distinctes donc on peut affirmer qu’il
existe une base (U1, U2, U3) de M3,1(R) telle que :

LU1 = λ1U1 , LU2 = λ2U2 et LU3 = λ3U3

(où λ1, λ2 et λ3 sont les réels définis dans la partie A )
Soit X0 ∈ R3 une condition initiale telle que X0 = α1U1 + α2U2 + α3U3 avec α3 ̸= 0

a) Démontrer, par récurrence sur n, que pour tout n ∈ N, Xn = LnX0.
b) Exprimer pour chaque entier n, Xn sur la base (U1, U2, U3).

c) En déduire que la suite
(

1

α3λn
3

Xn

)
converge vers U3.

d) En utilisant la valeur approchée obtenue à la question 10).
A long terme, quelle est la proportion de chaque classe dans la population ?

3



Partie C : Autour des matrices stochastiques.

Les matrices stochastiques apparaissent d’abord comme matrices de transition des chaînes de Markov, où elles
décrivent l’évolution d’une loi de probabilité. Elles sont aussi utilisées dans des modèles déterministes, par exemple
pour décrire la répartition d’une population entre classes dans un modèle de Leslie conservatif.
On les retrouve enfin dans divers contextes (réseaux, algorithmes de classement, files d’attente), où elles traduisent
l’idée d’une masse totale conservée et redistribuée entre plusieurs états.

On note 1n ∈ Mn,1(R) le vecteur colonne de taille n ne comportant que des 1.

On appelle matrice stochastique par lignes une matrice carrée à coefficients réels positifs ou nuls et dont la somme
des coefficients de chaque ligne vaut 1.
Autrement dit : A est stochastique par lignes si, et seulement si, A ⩾ 0 et A1n = 1n

On appelle matrice stochastique par colonnes une matrice carrée à coefficients réels positifs ou nuls et dont la
somme des coefficients de chaque colonne vaut 1.
Autrement dit : A est stochastique par colonnes si, et seulement si, A ⩾ 0 et 1T

nA = 1T
n

On dit qu’une matrice est stochastique si elle l’est par lignes ou par colonnes.

Dans cette partie les matrices sont carrées et de taille n× n.

15) a) En déduire que le produit de deux matrices stochastiques par lignes de Mn(R) l’est, elle aussi.
b) En déduire que les puissances d’une matrice stochastique par lignes de Mn(R) le sont, elles aussi.
c) Montrer que si A est stochastique par lignes alors 1 est une valeur propre de A.

16) Soit A = (aij) ∈ Mn(R).

On note λ ∈ C une valeur propre de A associée au vecteur propre X =

x1

...
xn

 ∈ Mn(C).

(On rappelle que X ̸= 0n×1 et AX = λX)

On note aussi k ∈ [[1, n]] tel que |xk| = max
1⩽i⩽n

|xi|

On suppose que A est stochastique par lignes .

a) Montrer successivement que : |λ|.|xk| ⩽
n∑

j=1

akj . |xj |, puis |λ|.|xk| ⩽
n∑

j=1

akj . |xk|

b) En déduire que |λ| ⩽ 1.

On admet que pour cette matrice A, stochastique par lignes on a dim(E1(A)) = 1

17) Soit A ∈ Mn(R),
démontrer que A et AT ont même spectre et que pour λ ∈ Sp(A), Eλ(A) et Eλ(A

T ) ont même dimension.

On peut alors en déduire que les résultats de la question 16) sont aussi valables pour les matrices stochastiques
par colonnes. (on ne demande pas de le démontrer)

On admet enfin le lemme suivant qui nous servira dans la partie D :

Soit A ∈ Mn(R)

Si A est stochastique et vérifie ∃m ∈ N, Am > 0 alors


1 ∈ Sp(A)

dim(E1(A)) = 1

∀λ ∈ Sp(A) \ {1}, |λ| < 1
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Partie D : Un modèle de Leslie conservatif à quatre états.

On modélise l’évolution d’une population de follicules pileux répartie en quatre états.
E1 : follicules en repos (phase de telogen),
E2 : début de phase de croissance (anagen précoce),
E3 : croissance avancée (anagen tardif, follicule actif ),
E4 : phase de regression (catagen involution).

Pour tout entier n ⩾ 0, on note Xn =


xn,1

xn,2

xn,3

xn,4

 le vecteur des effectifs dans chaque état à la génération n.

L’évolution des effectifs est modélisée par la relation de récurrence matricielle :

Xn+1 = LXn, L =


1/2 1/3 1/4 1

1/2 0 0 0

0 2/3 0 0

0 0 3/4 0

 .

18) Mise en place du modèle
a) Interpréter biologiquement les différents coefficients de la matrice L.
b) On note : Tn = xn,1 + xn,2 + xn,3 + xn,4

En remarquant que L est stochastique par colonnes, montrer que (Tn) est constante.
Interpréter ce résultat.

c) On définit : S =
{
x ∈ R4

∣∣ xi ⩾ 0 pour i = 1, 2, 3, 4 et x1 + x2 + x3 + x4 = 1
}
.

On interprète S comme l’ensemble des répartitions possibles en proportions entre les quatre états.

Montrer que si X0 ∈ S, alors Xn ∈ S pour tout n ∈ N.

d) Justifier que L4 > 0. Indication : on pourra remarquer que L est de la forme

∗ ∗ ∗ ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0


où les symboles ∗ désignent des coefficients strictement positifs.

19) Répartition d’équilibre

On s’intéresse ici aux répartitions d’équilibre, c’est-à-dire aux vecteurs X ∈ S tels que LX = X.

a) Le lemme démontré à la partie C permet-il de démontrer qu’il existe une et une seule répartition
d’équilibre.

b) Justifier par le calcul qu’il existe un unique vecteur d’équilibre X∗ ∈ S tel que LX∗ = X∗. On donnera
les composantes de X∗.

c) Interpréter biologiquement la répartition d’équilibre X∗.

20) Convergence vers l’équilibre
Dans cette question, on se propose de montrer que le modèle converge vers la répartition d’équilibre.
On admet qu’il existe une base de M4,1(C) formée de vecteurs propres de L :
Il existe une base B = (U1, U2, U3, U4), trois complexes λ2, λ3 et λ4 tels que :

U1 = X∗ LU2 = λ2U2 LU3 = λ3U3 LU4 = λ4U4

a) i. Quelle est la valeur propre associée à U1 ?
ii. Justifier que |λ2| < 1, |λ3| < 1 et |λ4| < 1

iii. En déduire U2, U3 et U4 appartiennent à H =
{
x ∈ C4

∣∣ x1 + x2 + x3 + x4 = 0
}
.

b) Soit (Xn)n∈N une suite vérifiant Xn+1 = LXn, avec X0 ̸= 0 et X0 ⩾ 0 .

On note T0 = x0,1 + x0,2 + x0,3 + x0,4 et


α1

α2

α3

α4

 la matrice des coordonnées de X0 dans base B.

i. Montrer que T0 ̸= 0 et expliquer ce que représente T0 ?
ii. Montrer que α1 = T0

iii. Montrer que la suite (Xn) converge vers T0 X
∗. (au sens défini à la question 1) des préliminaires )

iv. Interpréter ce résultat d’un point de vue biologique.
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Partie E : L’informatique de la partie C.

21) Dans un premier temps on admettra que les calculs sont exacts.
(aucune erreur d’arrondi n’est à prendre en compte)

a) Ecrire une fonction Python qui vérifie qu’une matrice est bien stochastique par lignes.
b) Ecrire une fonction Python qui vérifie qu’une matrice est bien stochastique par colonnes.

22) Reprendre la question précédente en considérant qu’un flottant x est égal à 1 si |x− 1| ⩽ 10−9.

23) Ecrire une fonction Python qui vérifie qu’une matrice P vérifie ∃m ∈ N, Pm > 0.
On admettra le résultat : si un tel m existe alors il vérifie m ⩽ (n− 1)2 + 1.
Dans cette question est-il utile de tenir compte des erreurs d’arrondi ?

24) Le but de cette question est de renvoyer la proportion stable associée à une matrice M donnée en entrée : on
entend par là un vecteur propre dominant normalisé de sorte que la somme de ses composantes vaille 1.

a) On veut écrire une fonction indice_max_module(valeurs) qui, étant donnée une liste valeurs de
nombres (réels ou complexes), renvoie l’indice de l’élément de la liste valeurs dont le module est
maximal.
Écrire en Python la fonction indice_max_module(valeurs) en utilisant une unique boucle for.

b) On définit la fonction suivante :

def elements_dominant(M):
valeurs, vecteurs = np.linalg.eig(M)
k = indice_max_module(valeurs)
lambda_dom = valeurs[k]
U = vecteurs[:, k]
return lambda_dom, U

i. Expliquer ce que renvoie la fonction elements_dominant(M).
ii. Que renvoie cette fonction pour les matrices L des parties B et D ?
iii. Ecrire une fonction vecteur_propre_dominant(M). qui renvoie la proportion stable associée à la

matrice M.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Annexe : Commandes Python
On suppose que les modules math et numpy sont importés via import math as m et import numpy as np .

Interprétation Python

Transforme une liste L en tableau numpy np.array(L)

Matrice nulle de taille n× p np.zeros([n,p])

Matrice remplie de 1 de taille n× p np.ones([n,p])

Coefficient d’indice (i, j) de la matrice A A[i, j]

Ligne d’indice i de la matrice A A[i, :]

Colonne d’indice j de la matrice A A[:, j]

Taille de la matrice A d = np.shape(A)

- nombre de lignes d[0]

- nombre de colonnes d[1]

Pour A et B matrices de tailles compatibles :

- addition et soustraction A + B , A - B

- multiplication matricielle np.dot(A, B)

Valeur absolue d’un réel x abs(x)

Valeur absolue d’un complexe z abs(z)

np.linalg.eigvals(M) --- Renvoie la liste des valeurs propres de M
np.linalg.eig(M) ------- Renvoie un couple L, P où L est la liste des valeurs

propres de M et P la matrice de passage associée
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